Acknowledgments

This work was financially supported by the Projects 01272/2005 and AGR/6509 (Andalusia Regional Government, Spain).

References

[1] Oliveras-Lopez, MJ; Berna, G; Jurado-Ruiz, E; Lopez-Garcia de la Serrana, H; Martin, F. Consumption of extra-virgin olive oil rich in phenolic compounds has beneficial antioxidant effects in healthy human adults. J. Funct. Foods. 2014 10, 475-484.

[2] FAOSTAT (2014). http://faostat3.fao.org/ (last accessed 10 December, 2014).

[3] Ministry of Agricultural, Food and Environment, Spain (2014). http://www. magrama.gob.es (last accessed 10 December, 2014).

[4] Saleh, M; Cuevas, M; Garcia, JF; Sanchez, S. Valorization of olive stones for xylitol and etanol production from dilute acid pretreatment via enzymatic hydrolysis and fermentation by Pachysolen tannophilus. Biochem. Eng. J. 2014 90, 286-293.

[5] Mata-Sanchez, J; Perez-Jimenez, JA; Diaz-Villanueva, MJ; Serrano, A; Ndnez- Sanchez, N; Lopez-Gimenez, FJ. Development of olive quality system base on biofuel energetic parameters study. Renew. Energ. 2014 66, 251-256.

[6] Fernandez-Bolanos, J; Felizon, B; Heredia, A; Guillen, R; Jimenez, A. Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones. Bioresource Technol. 1999 68, 121-132.

[7] Barreca, F; Fichera, CR. Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energ. Buildings 2013 62, 507-513.

[8] Rodriguez, G; Lama, A; Rodriguez, R; Jimenez, A; Guillen, R; Fernandez-Bolanos, J. Olive stone an attractive source of bioactive and valuable compounds. Bioresource Technol. 2008 99, 5261-5269.

[9] Pattara, C; Cappelletti, GM; Cichelli, A. Recovery and use of olive stones: Commodity, environmental and economic assessment. Renew. Sustain. Energy Rev. 2010 14, 14841489.

[10] Blazquez Garcia, G; Calero de Hoces, Monica; Martinez Garcia, Carmen; Cotes Palomino, Maria Teresa; Ronda Galvez, Alicia; Martin-Lara, Maria Angeles. Characterization and modeling of pyrolysis of the two-phase olive mill solid waste. Fuel Process. Technol. 2014 126, 104-111.

[11] Blanco Lopez, MC; Blanco, CG; Martinez-Alonso, A; Tascon, JMD. Composition of gases released during olive stones pyrolysis. J. Anal. Appl. Pyrol. 2002 65, 313-322.

[12] Skodras, G; Grammelis, P; Basinas, P; Kakaras, E; Sakellaropoulos, G. Pyrolysis and combustion characteristics of biomass and waste-derived feedstock. Ind. Eng. Chem. Res. 2006 45, 3791-3799.

[13] Vera, D; Jurado, F; Margaritis, NK; Grammelis, P. Experimental and economic study of a gasification plant fuelled with olive industry wastes. Energy Sustain. Dev. 2014 23, 247-257.

[14] Garcia, R; Pizarro, C; Lavin, AG; Bueno, JL. Characterization of Spanish biomass wastes for energy use. Bioresource Technol. 2012 103, 249-258.

[15] Skoulou, V; Koufodimos, G; Samaras, Z; Zabaniotou, A. Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas. Int. J. Hydrogen Energy 2008 33, 6515-6524.

[16] Sluiter, A; Ruiz, R; Scarlata, C; Sluiter, J; Templeton, D. 2008. Determination of extractives in biomass. In Laboratory Analytical Procedure NREL/TP-510-42619 National Renewable Energy Laboratory Colorado (USA) 1617 Cole Boulevard, Golden, Colorado 80401-3393.

[17] Manya, J; Ruiz, J; Arauzo, J. Some peculiarities of conventional pyrolysis of several agricultural residues in a packed bed reactor. Ind. Eng. Chem. Res. 2007 46, 90619070.

[18] Montane, D; Salvado, J; Torras, C; Farriol, X. High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenerg. 2002 22, 295-304.

[19] Martin-Lara, MA; Hernainz, F; Calero, M; Blazquez, G; Tenorio, G. Surface chemistry evaluation of some solid wastes from olive-oil industry used for lead removal from aqueous solutions. Biochem. Eng. J. 2009 44, 151-159.

[20] Fernandez-Bolanos, J; Felizon, B; Heredia, A; Rodriguez, R; Guillen, R; Jimenez, A. Steam-explosion of olive stones: Hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresource Technol. 2001 79, 53-61.

[21] Coimbra, MA; Waldron, KW; Selvendran, RR. Isolation and characterization of cell wall polimers from the heavily lignified tissues of olive (Olea europaea) seed hull. Carbohyd. Polym. 1995 27, 285-294.

[22] Nabarlatz, D; Ebringerova, A; Montane, D. Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohyd. Polym. 2007 69, 20-28.

[23] Cuevas, M; Garcia, JF; Cruz, N; Sanchez, S. Generacion de D-xilosa por tratamiento hidrotermico de endocarpios de aceitunas e hidrolisis enzimatica de los oligosacaridos. Afnidad 2013 70(562), 99-106.

[24] Calero, M; Hernainz, F; Blazquez, G; Tenorio, G; Martin-Lara, MA. Study of Cr (III) biosorption in a fixed-bed column. J. Hazard. Mater. 2009 171, 886-893.

[25] El-Sheikh, AH; Newman, AP; Al-Daffaee, HK; Phull, S; Cresswell, N. Characterization of activated carbon prepared from a single cultivar of Jordanian Olive stones by chemical and physicochemical techniques. J. Anal. Appl. Pyrol. 2004 71, 151-164.

[26] Martinez, ML; Torres, MM; Guzman, CA; Maestri, DM. Preparation and characteristics of activated carbon from olive stones and walnut shells. Ind. Crops Prod. 2005 23, 23-28.

[27] Budinova, T; Petrov, N; Razvigorova, M; Parra, J; Galiatsatou, P. Removal of arsenic(III) from aqueous solution by activated carbons prepared from solvent extracted olive pulp and olive stones. Ind. Eng. Chem. Res. 2006 45, 1896-1901.

[28] Alslaibi, TM; Abustan, I; Ahmad, MA; Fou, AA. Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon. J. Chem. Technol. Biotechnol. 2013 88, 2141-2151.

[29] Blazquez, G; Hernainz, F; Calero, M; Martin-Lara, MA; Tenorio, G. The effect of pH on the biosorption of Cr (III) and Cr (VI) with olive stone. Chem. Eng. J. 2009 148 473-479.

[30] Blazquez, G; Hernainz, F; Calero, M; Ruiz-Nhnez, LF. Removal of cadmium ions with olive stones: the effect of somes parameters. Process Biochem. 2005 40, 2649-2654.

[31] Martinez, L; Driss, SB; Hodaifa, G; Faur, C; Rodriguez, S; Gimenez, JA; Ochando, J. Adsorption of iron on crude olive stones. Ind. Crop. Prod. 2010 32 467-471.

[32] El Bakouri, H; Usero, J; Morillo, J; Ouassini, A. Adsorptive features of acid-treated olive stones for drin pesticides: Equilibrium, kinetic and thermodynamic modeling studies. Bioresource Technol. 2009 100, 4147-4155.

[33] Rodriguez, G; Lama, A; Trujillo, M; Espartero, JL; Fernandez-Bolanos, J. Isolation of a poweful antioxidant from Olea europaea fruti-mill waste: 3,4- Dihydroxyphenylglycol. LWT - Food Sci. Technol. 2009 42(2), 483-490.

[34] Cuevas, M. Hidrolisis enzimatica del hueso de aceituna. Fermentacion de hidrolizados con levaduras. PhD Thesis. University of Jaen (Spain), 2007.

[35] Kabel, MA; Carvalheiro, F; Garrote, G; Avgerinos, E; Koukios, E; Parajo, JC; Girio, FM; Schols, HA; Voragen, AGJ. Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohyd. Polym. 2002 50, 47-56.

[36] Glasser, WG; Ravindran, G; Jain, RK; Samaranayake, G; Tood, J. Comparative enzyme biodegradability of xylan, cellulose, and starch derivatives. Biotechnol. Progr. 1995 11, 552-557.

[37] Palm, M; Zacchi G. Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment. Biomacromolecules 2003 4, 617-623.

[38] Ando, H; Ohba, H; Sasaki, T; Takamine, K; Kamino, Y; Morikaki, S; Bakalova, R; Uemura, Y; Hatate Y. Hot-compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol. Vitro 2004 18, 765-771.

[39] Izumi, Y; Ikemizu, S; Shizuka, F. Intestinal environment improving agents containing acidic xylooligosaccharides. Patent, Japanese Publication Number: 2004182609 (2004).

[40] Palm, M; Zacchi, G. Separation of hemicellulosic oligomers from steam-treated spruce wood using gel filtration. Sep. Purif. Technol. 2004 36, 191-201.

[41] Nabarlatz, D; Torras, C; Garcia-Valls, R; Montane, D. Purification of xylo- oligosaccharides from almond shells by ultrafiltration. Sep. Purif. Technol. 2007 53, 235-243.

[42] Vegas, R; Moure, A; Dominguez, H; Parajo, JC; Alvarez, JR; Luque, S. Purification of oligosaccharides from rice husk autohydrolysis liquors by ultra- and nano-filtration.

Desalination 2006 199, 541-543.

[43] Yang, F; Fang, Z; Xu, Y; Yao, C; Yu, S; Zhu, Q. Separation of xylooligosaccharides from enzymatic hydrolytes using membrane reactor. J. Central South University Technol. 2003 10, 122-125.

[44] Tejeda-Ricardez, J; Vaca-Garcia, C; Borredon, ME. Design of a batch solvolytic liquefaction reactor for the vaporization of residues from the agricultural foodstuff. Chem. Eng. Res. Des. 2003 81, 1066-1070.

[45] Matos, M; Barreiro, MF; Gandini, A. Olive stone as a renewable source of biopolyols. Ind. Crop. Prod. 2010 32, 7-12.

[46] Cristofaro, D. A process for the realization of plates and panels consisting of exhausted olive husk of crushed olives stones and polypropylene, and derived product. Patent, International Publication Number: WO 9738834 (1997).

[47] Siracusa, G; La Rosa, AD; Siracusa, V; Trovato, M. Eco-Compatible use of olive husk as filler in thermoplastic composites. J. Polym. Environ. 2001 9, 157-161.

[48] Perinovic, S; Andricic, B; Erceg, M. Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochim. Acta 2010 510, 97-102.

[49] Koutsomitopoulou, AF; Benezet, JC; Bergeret, A; Papanicolaou, GC. Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technol. 2014 255, 10-16.

[50] Fischer, G; Schrattenholzer, L. Global bioenergy potentials through 2050. Biomass Bioenerg. 2001 20, 151-159.

[51] Demirba§, A. Partly chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate. Energ. Conv. Manage. 2002 43, 1801-1809.

[52] Cornelissen, S; Koper, M; Deng, YY. The role of bioenergy in a fully sustainable global energy system. Biomass Bioenerg.2012 41, 21-33.

[53] Heredia, A; Guillen, R; Fernandez-Bolanos, J; Rivas, M. Olives stone as a source of fermentable sugars. Biomass 1987 14, 143-148.

[54] Kiritsakis, A.K. El aceite de oliva. A. Madrid Vicente, Madrid (Spain), 1992.

[55] Rana, MS; Samano, V; Ancheyta, J; Diaz, JAI. A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel 2007 86, 1216-1231.

[56] Jenkin; BM; Baxter, LL; Miles Jr, TR; Mile, TR. Combustion properties of biomass. Fuel Process. Technol. 1998 54, 17-46.

[57] Mata-Sanchez, J; Perez-Jimenez, JA; Diaz-Villanueva, MJ; Serrano, A; Nhnez- Sanchez, N; Lopez-Gimenez, FJ. Statistical evaluation of quality parameters of olive stone to predict its heating value. Fuel 2013 113, 750-756.

[58] Yanes Duran, C. Propiedades termoquimicas del orujo de aceitunas. Poder calorifico.

Grasas Aceites. 1985 36, 45-47.

[59] Doymaz, I; Gorel, O; Akgun, NA. Drying characteristics of the solid by-product of olive oil extraction. Biosyst. Eng. 2004 88(2), 213-219.

[60] Gonzalez, JF; Gonzalez-Garcia, CM; Ramiro, A; Gonzalez, J; Sabio, E; Ganan, J; Rodriguez, MA. Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass Bioenerg. 2004 27, 145-154.

[61] Gebreegziabher, T; Oyedun, AO; Hui, CW. Optimum biomass drying for combustion - A modeling approach. Energy 2013 53, 67-73.

[62] Gomez-de la Cruz, FJ; Casanova-Pelaez, PJ; Palomar-Carnicero, JM; Cruz-Peragon, F. Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction. Energy 2014 75, 146-152.

[63] Skoulou, V; Zabaniotou, A; Stavropoulos, G; Sakelaropoulos, G. Syngas production from olive tree cuttings and olive kernels in a downdraft fixed-bed gasifier. Int. J. Hydrogen Energy 2008 33, 1185-1194.

[64] Mendu, V; Harman-Ware, AE; Crocker, M; Jae, J; Stork, J; Morton III, S; Placido, A; Huber, G; DeBolt, S. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnology for Biofuels 2011 4(43) 1-13.

[65] Marcilla, A; Garcia, AN; Pastor, MV; Leon, M; Sanchez, AJ; Gomez, DM. Thermal decomposition of the different particles size fractions of almond shells and olive stones. Thermal behaviour changes due to the milling processes. Thermochim. Acta 2013 564, 24-33.

[66] Batidzirai, B; Mignot, APR; Schakel, WB; Junginger, HM; Faaij, APC. Biomass torrefaction technology: Techno-economic status and future prospects. Energy 2013 62, 196-214.

[67] Doassans-Carrere, N; Muller, S; Mitzkat, M. REVE - a new industrial technology for biomass torrefaction: pilot studies. Fuel Process. Technol. 2014 126, 155-162.

[68] Basu, P. Biomass gasification and pyrolysis. Practical design and theory. Academic Press, Burlington (USA), 2010.

[69] Vera, D; Jurado, F; Carpio, J. Study of a downdraft gasifier and externally fired gas turbine for olive industry wastes. Fuel Process. Technol. 2011 92, 1970-1979.

[70] Skoulou, V; Swiderski, A; Yang, W; Zabaniotou, A. Process characteristics and products of olive kernel high temperature steam gasification (HTSG). Bioresource Technol. 2009 100, 2444-2451.

[71] Gomez-Barea, A; Arjona, R; Ollero, P. Pilot-plant gasification of olive stone: A technical assesment. Energ. Fuel 2005 19, 598-605.

[72] Song, X; Guo, Z. Technologies for direct production of flexible H2/CO synthesis gas. Energy Conv. Manage. 2006 47, 560-569.

[73] Vera, D; de Mena, B; Jurado, F; Schories, G. Study of a downdraft gasifier and gas engine fueled with olive oil industry wastes. Appl. Therm. Eng. 2013 51, 119-129.

[74] Striugas, N; Zakarauskas, K; Dziugys, A; Navakas, R; Paulauskas, R. An evaluation of performance of automatically operated multi-fuel downdraft gasifier for energy production. Appl. Therm. Eng. 2014 73(1), 1151-1159.

[75] Yin, R; Liu, R; Wu, J; Wu X; Sun, C; Wu, C. Influence of particle size on performance of a pilot-scale fixed-bed gasification system. Bioresource Technol. 2012 119, 15-21.

[76] Gonzalez, JF; Roman, S; Engo, G; Encinar, JM; Martinez, G. Reduction of tars by dolomite cracking during two-stage gasification of olive cake. Biomass Bioenerg. 2011 35,4324-4330.

[77] Sun, Y; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technol. 2002 83(1), 1-11.

[78] Sanchez, S; Bravo, V; Garcia, JF; Cruz, N; Cuevas, M. Fermentation of D-glucose and D-xylose mixtures by Candida tropicalis NBRC 0618 for xylitol production. World J. Microbiol. Biotechnol. 2008 24, 709-716.

[79] Kumar, P; Barrett, DM; Delwiche, MJ; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009 48, 3713-3729.

[80] Overend, RP; Chornet, E. Fractionation of lignocellulosics by steam-aqueous pretreatment. Phil. Trans. R. Soc. Lond. Ser. A. 1987 321, 523-536.

[81] Mateo, S; Puentes, J G; Sanchez, S; Moya, A J. Oligosaccharides and monomeric carbohydrates production from olive tree pruning biomass. Carbohyd. Polym. 2013 93, 416-423.

[82] Allen, SG; Schulman, D; Lichwa, J; Antal, MJ; Jennings, E; Elander, R. A comparison of aqueous and dilute-acid single-temperature pretreatment of yelow poplar sawdust. Ind. Eng. Chem. Res. 2001 40, 2352-2361.

[83] Cuevas, M; Sanchez, S; Bravo, V; Cruz, N; Garcia, JF. Autohydrolysis and diluted- acid treatment of olive stone: study of the composition of the hydrolyzates. 17th European Biomass Conference and Exhibition, Hamburg (Germany), 2009.

[84] Ballesteros, I; Oliva, JM; Saez, F; Ballesteros, M. Ethanol production from lignocellulosic byproducts of olive oil extraction. Appl. Biochem. Biotechnol. 2001 91:93, 237-252.

[85] Sasaki, M; Adschiri, T; Arai, K. Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresource Technol. 2003 86, 301-304.

[86] Martinez, JM; Reguant, J; Montero, MA; Montane, D; Salvado, J; Farriol, X. Hydrolytic pretreatment of softwood and almond shells. Degree of polymerization and enzymatic digestibility of the cellulose fraction. Ind. Eng. Chem. Res. 36 1997, 688696.

[87] Sasaki, M; Kabyemela, B; Malaluan, R; Hirose, S; Takeda, N; Adschiri, T; Arai, K. Cellulose hydrolysis in subcritical and supercritical water. J. Supercrit. Fluid. 1998 13, 261-268.

[88] Palmqvist, E; Hahn-Hagerdal, B; Galbe, M; Zacchi, G. The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzyme Microb. Technol. 19, 1996 470-476.

[89] Laser, M; Schulman, D; Allen, SG; Lichwa, J; Antal, MJ; Lynd, LR. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technol. 2002 81, 33-44.

[90] Seilliere, G. Sur un cas d hydrolyse diastasique de la cellulose du coton, apres dissolution dans la liqueur de Schweitzer. C.R. Soc. Biol. 1906 61, 205-206.

[91] Reese, E; Siu, R; Levinson, H. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Appl. Bacteriol. 1950 59, 485-497.

[92] Duff, SJB; Murray, WD. Ethanol production from pulp mill cellulosic wastes. Bioresource Technol. 1996 55, 1-33.

[93] Chanzy, H; Henrissat, B. Undirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS J. 1985 184, 285-288.

[94] Nidetzky, B; Steiner, W; Claeyssens, M. Cellulose hydrolysis by the cellulases from Trichoderma reesei: Adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis. Biochem. J. 1994 303, 817-823.

[95] Gregg, DJ; Saddler, JN. Factor affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol. Bioeng. 1996 51, 375-383.

[96] Berlin, A; Gilkes, N; Kurabi, A; Bura, R; Tu, MB; Kilburn, D. Weak lignin-binding enzymes - A novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl. Biochem. Biotechnol. 2005 121, 163-170.

[97] Sewalt, VJH; Glasser, WG; Beauchemin, KA. Lignin impact on fiber degradation. 3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J. Agr. Food Chem. 1997 45, 1823-1828.

[98] Boussaid, AL; Saddler, JN. Adsorption and activity profiles of cellulases during the hydrolysis of two Douglas-fir pulps. EnzymeMicrob. Technol. 1999 24, 138-143.

[99] Mooney, CA; Mansfield, SD; Touhy, MG; Saddler, JN. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technol. 1998 64, 113-119.

[100] Abdi, N; Hamdache, F; Belhocine, D; Grib, H; Lounici, H; Piron, DL; Mameri, N. Enzymatic saccharification of solid residue of olive mill in a batch reactor. Biochem. Eng. J. 2000 6, 177-183.

[101] Cuevas, M; Sanchez, S; Bravo, V; Cruz, N; Garcia, JF. Fermentation of enzymatic hydrolysates from olive stones by Pachysolen tannophilus. J. Chem. Technol. Biotechnol. 2009 84, 461-467.

[102] Roberto, IC; Lacis, LS; Barbosa, MFS; de Mancilla IM. Utilization of sugar cane bagasse hemicellulosic hydrolisate by Pichia stipitis for the production of ethanol. Process Biochem. 1991 26, 15-21.

[103] Toivola, A; Yarrow, D; van den Bosch, E; van Dijken, JP; Scheffers, WA. Alcoholic fermentation of D-xylose by yeasts. Appl. Environ. Microbiol. 1984 47(6), 1221-1223.

[104] Sassner, P; Galbe, M; Zacchi, G. Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content.

Enzyme Microb. Technol. 2006 39, 756-762.

[105] Slininger, PJ; Bothast, RJ; Okos, MR; Ladisch, MR. Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations. Biotechnol. Lett. 1985 7, 431-436.

[106] Palmqvist, E; Grage, H; Meinander, NQ; Hahn-Hagerdal, B. Main and interaction effects of acetic acid, furfural and p-hidroxibenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 1999 63(1), 46-55.

[107] Helle, S; Cameron, D; Lam, J; White, B; Duff, S. Effect of inhibitory compounds founds in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enzyme Microb. Technol. 2003 33, 786-792.

[108] Alfani, F; Gallifouco, A; Saporosi, A; Spera, A; Cantarelle, M. Comparison of SHF and SSF processes for the bioconversion of steam exploded wheat straw. J. Ind. Microbiol. Biotechnol. 2000 25, 184-192.

[109] Wingren, A; Galbe, M; Zacchi, G. Techno-economic evaluation of producing ethanol from softwood comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Progr. 2003 19, 1109-1117.

[110] Cuevas, M; Sanchez, S; Garcia, JF; Baeza, J; Parra, C; Freer, J. Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones. Renew. Energ. 2015 74, 839-847.

[111] Saleh, M. Tratamientos a presion e hidrolisis del hueso de aceituna. Fermentacion de hidrolizados con Pachysolen tannophilus. PhD Thesis. University of Jaen (Spain), 2014.

In: Agricultural Wastes Editor: Camille N. Foster

ISBN: 978-1-63482-359-3 © 2015 Nova Science Publishers, Inc.

 
Source
< Prev   CONTENTS   Source   Next >