References

[1] Ros, E. Health benefits of nut consumption. Nutrients, 2010, 2, 652-682.

[2] Phenol-Explorer database. http://www.phenol-explorer.eu/ (accessed January 2015).

[3] Coenders, A. Quimica culinaria: estudio de lo que le sucede a los alimentos antes, durante y despues de cocinados. Ed. ACRIBIA, S.A. Zaragoza (Spain), 2007; 88-90.

[4] Vadivel, V.; Kunyanga, C. N.; Biesalski, H. K. Health benefits of nut consumption with special reference to body weight control. Nutrition, 2012, 28, 1089-1097.

[5] Food and Agriculture Organization of the United Nations. (FAO Database). http://faostat.fao.org/ (accessed January 2015).

[6] Zajdenwerg, C.; Branco, G.; Alamed, J.; Decker, E.; Castro, I. Correlation between sensory and chemical markers in the evaluation of Brazil nut oxidative shelf-life. Eur. Food Res. Technol., 2011, 233, 109-116.

[7] Biesaga, M. Influence of extraction methods on stability of flavonoids. J. Chromatogr. A., 2011, 1218, 2505-2512.

[8] Laceta, I.; Etxabide, A.; Cabezudo, S.; de la Caba, K.; Guerrero, P. Bio-based films prepared with by-products and wastes: environmental assessment. J. Clean. Prod., 2014, 64, 218-227.

[9] Valdes, A.; Mellinas, C.; Ramos, M.; Garrigos, M.C.; Jimenez, A. Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front. Chem., 2014, 2: 1-10.

[10] Beltran, A.; Ramos, M.; Valdes, A.; Garrigos, M. C. Linoleic acids: sources, biochemical properties and health effects. Ed. Nova Science Publishers, New York, 2012, 83-96.

[11] Jacobsen, C. Enrichment of foods with omega-3 fatty acids: a multidisciplinary challenge. Ann. N.Y. Acad. Sci., 2010, 1190, 141-150.

[12] Carlsen, M. H.; Halvorsen, B. L.; Holte, K.; Bohn, S. K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; Barikmo, I.; Berhe, N.; Willett, W. C.; Phillips, K. M.; Jacobs, D. R.; Blomhoff, R. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. J. Nutr., 2010, 9, 1-11.

[13] Cordain, L.; Eaton, S. B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B. A.; O’Keefe, J. H.; Brand-Miller, J. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr., 2005, 81, 341-354.

[14] U.S. Food and Drug Administration (FDA). Qualified health claims: letter of enforcement discretion-nuts and coronary heart disease (Docket No 02P-0505). (July 14, 2003). FDA website: http://www.fda.gov/ (accessed January 2015).

[15] Alasalvar, C.; Shahidi, F. Natural antioxidants in tree nuts. Eur. J. Lipid Sci. Technol., 2009, 111,1056-1062.

[16] Santana, O.; Gonzalez, A.; Sanchez, R. Agricultural residues as a source of bioactive natural products. Phytochem. Rev., 2012, 11, 447-466.

[17] Faruk, O.; Bledzki, A. K.; Fink, H. P.; Sain, M. Biocomposites reinforced with natural fibres: 2000-2010. Prog. Pol. Sci., 2012, 37, 1552-1596.

[18] Mande, S. Biomass gasifier-based power plants: potential, problems, and research needs for decentralized rural electrification. In: Lal B, Reddy MRVP (Eds). Wealth from waste: trends and technologies. Ed. TERY: The Energy and Resources Institute, New Delhi, India, 2005.

[19] Bonelli, P.; Della Rocca, P.; Cerrella, E.; Cukierman, A. Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil nut shells.

Bioresour. Technol., 2001, 76:15-22.

[20] Cardozo, E.; Erlich, C.; Alejo, L.; Fransson, T. Combustion of agricultural residues: An experimental study for small-scale applications. Fuel, 2014, 115: 778-787.

[21] Diedhiou, A.; Bensakhria, A.; Ndiaye, L.; Khelfac, A.; Sock, O. Study of Cashew Nut Shells Valorisation by Gasification. Chem. Eng. Trans., 2014, 39, 1171-1176.

[22] Melzer, M.; Blina, J.; Bensakhria, A.; Valette, J.; Broust, F. Pyrolysis of extractive rich agroindustrial residues. J. Anal. Appl. Pyrol., 2013, 104, 448-460.

[23] Johansson, C.; Bras, J.; Mondragon, I.; Nechita, P.; Plackett, D.; Simon, P.; Aucejo, S. Renewable fibers and bio-based materials for packaging applications - A review of recent developments. BioResources, 2012, 7, 2506-2552.

[24] Santos, J. C. O.; Dos Santos, I. M. G.; De Souza, A. G.; Prasad, S.; Dos Santos, A. V. Thermal stability and kinetic study on thermal decomposition of commercial edible oils by thermogravimetry. J.FoodSci., 2002, 67, 1393-98.

[25] Kumar, V.; Kumari, M. Processing and characterization of natural cellulose fibres/thermoset polymer composites. Carbohyd. Polym., 2014, 109, 102-117.

[26] Mitra, B.C. Environment friendly composite materials: biocomposites and green composites. Defence Sci. J., 2014, 64, 244-261.

[27] Dong, C.; Davies, I. J. Flexural properties of macadamia nutshell particle reinforced polyester composites. Composites: Part B, 2012, 43, 2751-2756.

[28] Pirayesh, H.; Khazaeian, A.; Tabarsa, T. The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Composites: Part B, 2012, 43, 3276-3280.

[29] Salasinska, K.; Ryszkowska, J. Physico-mechanical properties and dimensional stability of natural fibre composites fabricated from polyethylene waste and walnut shells. ECCM 2012 - Composites at Venice, Proceedings of the 15th European: Composites at Venice, ECCM 2012; Venice; Italy.

[30] Pirayesh, H.; Khanjanzadeh, H.; Salari, A. Effect of using walnut/almond shells on the physical, mechanical properties and formaldehyde emission of particleboard.

Composites: PartB, 2013, 45, 858-863

[31] Essabir, H.; Nekhlaoui, S.; Malta, M.; Bensalah, M.O.; Arrakhiz, F.Z.; Qaiss, A.; Bouhfid, R. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Mater. Des., 2013, 51, 225-230.

[32] Mandalari, G.; Tomaino, A.; Arcoraci, T.; Martorana, M.; Turco, V. L.; Cacciola, F.; Rich, G. T.; Bisignano, C.; Saija, A.; Dugo, P.; Cross, K. L.; Parker, M. L.; Waldron, K. W.; Wickham, M. S. J. Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). J. Food Comp. Anal., 2010, 23, 166-174.

[33] Valdes, A.; Ramos, M.; Sanahuja, A.; Garrigos, M.C. Characterization and degradation characteristics of poly(e-caprolactone)-based composites reinforced with almond skin residues. Polym. Degrad. Stab., 2014, 108, 269-279.

[34] Caraschi, J.; Leao, A.; Chamma, P. Avalia?ao de Paineis Produzidos a partir de Residuos Solidos para Aplica?ao na Arquitetura. Polimeros: Ciencia e Tecnologia, 2009, 19, 47-53.

[35] Prado, J. G.; Porto, E.; Bani, C.; Matias de Alencar, S.; Micotida, E.; Ribeiro, I. S.; de Aquino, L. M. Antimicrobial protential and chemical composition of agroindustrial wastes. J. Nat. Prod., 2012, 5, 27-36.

[36] Osorio, E.; Flores, M.; Hernandez, D.; Ventura, J.; Rodriguez, R., Aguilar, C. N. Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya Illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Ind. Crops. Prod., 2010, 1, 155-157.

[37] Realini, C. E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci., 2014, 98, 404-419.

[38] Singh, P.; Wani, A. A.; Saengerlaub, S. Active packaging of food products: recent trends. Nut. Food Sci., 2011, 41, 249-260.

[39] Ramos, M.; Valdes, A.; Beltran, A. Desarrollo de biopeliculas activas para envasado de alimentos. Aplicacion en materiales para envasado de alimentos. Ed. Academica Espanola, 2012.

[40] Fernandez, A. A.; Pereira, E.; Freire, M. S.; Valentao, P.; Andrade, P. B.; Gonzalez, J. A.; Pereira, J. A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crop. Prod., 2013, 42, 126-132.

[41] Teets, A. S.; Were, L. M. Inhibition of lipid oxidation in refrigerated and frozen salted raw minced chicken breasts with electron beam irradiated almond skin powder. Meat Sci., 2008, 80, 1326-1332.

[42] Teets, A. S.; Sundararaman, M.; Were, L. M. Electron beam irradiated almond skin powder inhibition of lipid oxidation in cooked salted ground chicken breast. Food Chem., 2008, 111, 934-941.

[43] Siriwardhana, S. S. K. W.; Shahidi, F. Antiradical activity of extracts of almond and its by-products. J. Amer. Oil Chem. Soc., 2002, 79, 903-908.

[44] Liu, Z.; Lin, X.; Huang, G.; Zhang, W.; Rao, P.; Ni, L. Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe, 2014, 26, 1-6.

[45] Tsujita, T.; Shintani, T.; Sato, H. a-Amylase inhibitory activity from nut seed skin polyphenols. 1. Purification and characterization of almond seed skin polyphenols. J. Agric. Food. Chem., 2013, 61, 4570-4576.

[46] Bartolome, B.; Monagas, M.; Garrido, I.; Gomez, C.; Martin, P.J.; Lebron, R.; Urpi, M.; Llorach, R.; Andres, C. Almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols: from chemical characterization to targeted analysis of phenolic metabolites in humans.

Biochem. Biophys., 2010, 501, 124-33.

[47] Pirayesh H.; Khazaeian A. Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Composites: Part B, 2012, 43, 1475-1479.

[48] Michel, T.; Halabalaki, M.; Skaltsounis, A. L. New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources. PlantaMed., 2013, 79, 514-532.

[49] Ballard, T. S.; Mallikarjunan, P.; Zhou, K.; O'Keefe, S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem., 2010, 120, 11851192.

[50] Rosales, P.; Arellano, S.; Dorantes, L.; Garcia, F.; Lopez, M. Comparison between Antioxidant Activities of Phenolic Extracts from Mexican Peanuts, Peanuts Skins, Nuts and Pistachios. J. Mex. Chem. Soc., 2014, 58, 185-193.

[51] Goli, A. H.; Barzegar, M.; Sahari, M. A. Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem., 2005, 92, 521-525.

[52] Lorenzo, J.; Gonzalez, R.; Sanchez, M.; Amado, I.; Franco, D. Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo” Food. Res. Int., 2013, 54, 611-620.

[53] Lorenzo, J.; Sineiro, J.; Amado, I.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat. Sci., 2014, 96, 526-534.

[54] Vellingiri, V.; Amendola, D.; Spigno, G. Screening of Four Different Agro-Food ByProducts for the Recovery of Antioxidants and Cellulose. Chem. Eng. Trans., 2014, 37, 757-762.

[55] Salarbashi, D.; Tajik, S.; Shojaee-Aliabadi, S.; Ghasemlou, M.; Moayyed, H.; Khaksar, R.; Shahidi, M. Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils. Food. Chem., 2014, 146: 614-622.

[56] Pinto, A.; Santos, T.; Caceres, C.; Lima, J.; Ito, E.; Azeredo, H. Starch-cashew tree gum nanocomposite films and their application for coating cashew nuts. LWT- Food. Sci. Technol., 2014, article in press.

[57] Abreu, F.; Oliveira, E.; de Paula, H.; de Paula, R. Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr. Polym., 2012, 89: 1277- 1282.

[58] Araujo, I.; Zampa, M.; Moura, J.; dos Santos, J.; Eaton, P.; Zucolotto, V.; Veras, L.; de Paula, R.; Feitosa, J.; Leite, J.; Eiras, C. Contribution of the cashew gum (Anacardium occidentale L.) for development of layer-by-layer films with potential application in nanobiomedical devices. Mat. Sci. Eng., 2012, 32: 1588-1593.

ISBN: 978-1-63482-359-3 © 2015 Nova Science Publishers, Inc.

In: Agricultural Wastes Editor: Camille N. Foster

 
Source
< Prev   CONTENTS   Source   Next >