References

[1] Friedman, M. “Rice Brans, Rice Bran Oils, and Rice Hulls: Composition, Food and Industrial Uses, and Bioactivities in Humans, Animals, and Cells ”, J. Agricultural and Food Chem. 61, 10626-10641 (2013).

[2] Food and Agricultural Organization, site: http://faostat3.fao.org/ browse/Q/QC/E, accessed 01/07/2015.

[3] U.S. Department of the Interior, U.S. Geological Survey, Mineral Commodity Summaries 2013, http://minerals.usgs.gov/ minerals/pubs/mcs/2013/mcs2013.pdf, accessed 12/20/2014.

[4] Kumar, P. S., Ramakrishnan, K., Kirupha, S. D. and S. Sivanesan, “Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice hull,” Brazilian Journal of Chemical Engineering, 27, 347 - 355 (2010).

[5] Rodrigues, F. A. and Joekes, I. “Cement Industry: Sustainability, Challenges and Perspectives”, Environmental Chemistry Letters, 9, 2, 151-166 (2011).

[6] Sugita, S. “Method of producing active rice hull ash ” US patent 5329867 A, 1994.

[7] Possamai, V., Hotza, D. D., Accordi, J., Oliveira, A. P. N. “Estudo comparativo entre silica obtida por lixivia acida da casca de arroz e silica obtida por tratamento termico da cinza de casca de arroz”. Quimica Nova, 29, 1175-1179 (2006).

[8] Gu, S., Zhou, J., Yu, C., Luo, Z., Wang, Q. and Shi, Z. “A novel two-staged thermal synthesis method of generating nanosilica from rice hull via pre-pyrolysis combined with calcination” Industrial Crops and Products, 65, 1-6, (2015).

[9] Gu, S., Zhou, J., Luo, Z., Wang, Q. and Ni, M. “A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice hull”. Industrial Crops and Products, 50, 540-549 (2013).

[10] Wang, W., Martin, J. C., Fan, X., Han, A., Luo, Z. and Sun, L. “Silica Nanoparticles and Frameworks from Rice Hull Biomass.” ACS Applied Materials & Interfaces, 4, 977-981, (2012).

[11] Zhang, H., Ding, X., Wang, Z. and Zhao, X. “Consecutively preparing d-xylose, organosolv lignin, and amorphous ultrafine silica from rice hull.” Bioinorganic Chemistry and Applications, Article ID 603481 (2014).

[12] Chen, H., Wang, W., Martin, J. C., Oliphant, A. J., Doerr, P. A., Xu, J. F., DeBorn, K. M., Chen, C. and Sun, L. “Extraction of Lignocellulose and Synthesis of Porous Silica Nanoparticles from Rice Hulls: A Comprehensive Utilization of Rice Hull Biomass.” ACS Sustainable Chemistry & Engineering, 1, 254-259 (2013).

[13] Hsieh, Y., Du, Y., Jin, F., Zhou, Z. and Enomoto, H. “Chemical Alkaline pre-treatment of rice hulls for hydrothermal production of acetic acid.” Chemical Engineering Research and Design, 87, 13-18 (2009).

[14] Adam, F., Seng, T. S. Chew and Andas, J. “A simple template-free sol-gel synthesis of spherical nanosilica from agricultural biomass.” Journal of Sol-Gel Science and Technology, 59, 580-583 (2011).

[15] Noushad, M., Rahman, I. A., Sheeraz, N. Zulkifli, C., Husein, A. and Mohamad, D. “Low surface area nanosilica from an agricultural biomass for fabrication of dental nanocomposites.” Ceramics International, 40, 4163-4171 (2014).

[16] Zulkifli, N. S. C., Rahmann, I. A., Mohamad, D. and Husein, A. “A green sol-gel route for the synthesis of structurally controlled silica particles from rice hull for dental composite filler.” Ceramics International, 39, 4559-4567 (2013).

[17] Lin, L., Zhai, S. R., Xiao, Z. Y., Liu, N., Song, Y., Zhai, B. and Na, Q. D. “Cooperative effect of polyethylene glycol and lignin on SiO2 microsphere production from rice hulls.” Bioresource Technology, 125,172-174 (2012).

[18] Pijarn, N., Jaroenworaluck, A., Sunsaneeyametha, W. and Stevens, R. “Synthesis and characterization of nanosized-silica gels formed under controlled conditions.” Powder Technology, 203, 462-468 (2010).

[19] Le, V. H., Thuc, C. N. H. and Thuc, H. H. “Synthesis of silica nanoparticles from Vietnamese rice hull by sol-gel method.” Nanoscale Research Letters, 8:58 (2013).

[20] Ma, X., Zhou, B., Gao, W., Qu, Y., Wang, L., Wang, Z. and Zhu, Y. “A recyclable method for production of pure silica from rice hull ash.” Powder Technology, 217, 497-501 (2012).

[21] Vasquez, T. G. P., Casas-Botero, A. E., Ramirez-Carmona, M. E., Torres-Taborda, M. M., Soares, C. H. L. and Hotza, D. “Biogeneration of silica nanoparticles from rice hull ash using Fusarium Oxysporum in two different growth media.” Industrial & Engineering Chemistry Research, 53, 6959-6965 (2014).

[22] Pineda, T., Soares, C. H. L., Hotza, D., Casas-Botero, A. E., Ramirez-Carmona, M., Torres-Taborda, M. “Extracellular synthesis of silica oxide particles by Fusarium oxysporum from rice hull ash.”Materials Science Forum, 727-728, 1153-1157 (2012).

[23] Bansal, V., Ahmad, A. and Sastry, M. “Fungus-mediated biotransformation of amorphous silica in rice hull to nanocrystalline silica.” Journal of the American Chemical Society, 128, 14059-14066 (2006).

[24] Young, J. F. and Mindess, S., Concrete, Prentice-Hall, New Jersey, USA 1981

[25] J. Davidovits, “Global warming impact on the cement and aggregates industries”, World Resour. Rev. 6 (2) (1994) 263-278.

[26] Rodrigues, F. A. and Monteiro, P. J. M. “Hydrothermal synthesis of cements from rice hull ash,” J. Mat. Sci. Lett., 18 (19) 1551-1552 (1999).

[27] Romano, J. S., Miranda, M. S., Oliveira, M. B. R. and Rodrigues, F. A. “Biogenic cements and encapsulation of zinc.” J. Clean Production, 19, 1222-1228 (2011).

[28] Amorim, R. P., Miranda, M. S., Oliveira, M. B. R. and Rodrigues, F. A. “Synthesis, hydration and durability of rice hull cements doped with chromium.” J. Haz. Mat., 186 (1) 497-501 (2011).

[29] Cheng, Y., Lu, M., Li, J. Su, X. Pan, S., Jiao, C. and Feng, M. “Synthesis of MCM-22 zeolite using rice hull as a silica source under varying-temperature conditions”, Journal of Colloid and Interface Science 369, 388-394 (2012).

[30] Ghasemi, Z., and Younesi, H. “Preparation and Characterization of Nanozeolite NaA from Rice Hull at Room Temperature without Organic Additives”, Journal of Nanomaterials, Article ID 858961, (2011).

[31] Kordatos, K., Gavela, S., Ntziouni, A., Pistiolas, K.N. Kyritsi, A., Rigopoulou, V. K. “Synthesis of highly siliceous ZSM-5 zeolite using silica from rice hull ash.” Microporous andMesoporous Materials, 115 189-196 (2008).

[32] Loganathan, P., Vigneswaran, S., and Kandasamy, J. “Enhanced removal of nitrate from water using surface modification of adsorbents A review.” Journal of Environmental Management, 131, 363-374 (2013).

[33] Liu, H., Chen, T., Chang, D., Chen, D. and Frost, L. R. “Catalytic cracking of tars derived from rice hull gasification over goethite and palygorskite” Applied Clay Science 70 51-57 (2012).

[34] Gan, P. P., Fong, S. and Li, Y. “Efficient removal of Rhodamine B using a rice hull- based silica supported iron catalyst by Fenton-like process.” Chemical Engineering Journal 229 351-363 (2013).

[35] Elhag, A. and Adam, F. “The benzylation of benzene using aluminium, gallium and iron incorporated silica from rice hull ash”, Microporous and Mesoporous Materials 118 35-43 (2009).

[36] Foo, K.Y. and Hameed, B.H. “Utilization of rice hull ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste”, Advances in Colloid and Interface Science 152, 39-47 (2009).

[37] Manique, M. C., Faccini, C. C., Onorevoli, B., Benvenutti, E. V. and Caramao, E. B. “Rice hull ash as an adsorbent for purifying biodiesel from waste frying oil.” Fuel, 92 56-61 (2012).

[38] Chen, X. G., Lv, S. S., Liu, S. T., Zhang, P. P. Zhang, A. B., Sun, J. and Ye, Y. “Adsorption of Methylene Blue by Rice Hull Ash,” Separation Science and Technology, 47, 1, (2012).

[39] Moreno, A., Figueroa, D. and Hormaza, A. “Adsorcion de azul de metileno sobre cascarilla de arroz”, Produccion + Limpia, 7, 1 (2012)

[40] Hua, L. H. and Wang, C. L. “The removal of heavy metal ions from spiked aqueous solutions using solid wastes—Comparison of sorption capability”, Journal of the Taiwan Institute of Chemical Engineers 41, 585-590 (2010).

[41] Jeon, C. “Removal of copper ion using rice hulls, Journal of Industrial and Engineering Chemistry.” 17, 517-520 (2011).

[42] Wang, L. H., Lin, C. I. and Wu, F. C. “Kinetic study of adsorption of copper (II) ion from aqueous solution using rice hull ash” Journal of the Taiwan Institute of Chemical Engineers 41 599-605 (2010).

[43] Lin, C. I. and Wang, L. H. “Adsorption of Nickel(II) Ion from Aqueous Solution Using Rice Hull Ash”, Journal Chemical Eng. of Japan, 44, 278-285 (2011).

[44] Imyim, A. and Prapalimrnngsi, E., “Humic acids removal from water by aminopropyl functionalized rice hull ash”, Journal of Hazardous Materials 184, 775-781 (2010).

[45] Chen, H., Wang, H., Xue, Z. Yang, L., Xiao, Y., Zheng, M., Lei, B., Liu, Y. and Sun,

L. “High hydrogen storage capacity of rice hull based porous carbon”, International J. Hydrogen Energy, 37, 18888-18894 (2012).

[46] Tortora, G. J.; Funke, B. R. and Case, A. L. Microbiologia. 8a edi?ao, 1a reimpressao, Artmed, Porto Alegre (2006).

[47] John, R. P., Anisha, G. S.; Nampoothiri, K. M. and Pandey, A. “Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production.”

Biotechnology Advances, 27, 145-153 (2009).

[48] Hatti-Kaul, R., Tomvall, U., Gustafsson, L. and Borjesson, P. “Industrial biotechnology for the production of bio-based chemicals - A cradle-to-grave perspective.” Trends in Biotechnology, 25, 3, 119-124 (2007).

[49] Genovese, A. L., Udaeta, M. E. M. and Galvao, L. C. R. “Aspectos energeticos da biomassa como recurso no Brasil e no mundo. In: Encontro energia no meio rural, 6 (2006), . Acess on: 28 Dec. 2014.

[50] Damartziz, T. and Zabaniotou, A. “Thermochemical conversion of biomass to second generation biofuels through integrated process design - A review.” Renewable and Sustainable Energy Reviews, 15, 366-378 (2011).

[51] Demirbas, A. “A. Competitive liquid biofuels from biomass. Applied Energy, 88, 17-28 (2011).

[52] Wang, L., Zhao, B.; Liu, B., Yu, B.; Ma, C., Su, F., Hua, D., Li, Q., Ma, Y., Xu, P. “Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain.” Bioresource Technology, 101, 7908-7915 (2010).

[53] Saha,, B. C. and Cotta, M. A. “Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass and Bioenergy.” 32, 971-977 (2008).

[54] Suxia, R., Haiyan, X., Jinling, Z., Shunqing, L., Xiaofeng, H. and Tingzhou, L. “Furfural production from rice husk using sulfuric acid and a solid acid catalyst through a two-stage process.” Carbohydrate Research, 359, 1-6 (2012).

[55] Suxia, R., Haiyan, X., Jinling, Z., Shunqing, L., Xiaofeng, H. and Tingzhou, L.. Furfural production from rice husk using sulfuric acid and a solid acid catalyst through a two-stage process.” Carbohydrate Research, 359, 1-6 (2012).

[56] Moiser, N.; Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. and Ladisch,

M. “Features of promising technologies for pretreatment of lignocellulosic biomass.” Bioresource Technology, 96, 673-686 (2005).

[57] Sarkar, N. “Bioethanol production from agricultural wastes: An overview.” Renewable Energy, 19-27 (2012).

[58] Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P. “Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production.” Industrial & Engineering Chemistry Research, 48, 8, 3713-3729 (2009).

[59] Oggeda, T. L. and Petri, D. F. S. “Hidrolise Enzimatica de Biomassa.” Qumica Nova, 33, 1549 - 1558(2010).

[60] Megawati, S., Sulistyo, H. and Hidayat, M. “Kinetics of sequential reaction of hydrolysis and sugar degradation of rice husk in ethanol production: Effect of catalyst concentration.” Bioresource Technology, 102, 2062-2067 (2010).

[61] Aguiar, R., Ramirez, J. A., Garrote, G. and Vazques, M. “Kinetic study of the acid hydrolysis of sugar cane bagasse.” Journal of FoodEnginnering, 5, 309-318 (2002).

[62] Cunha-Pereira, F., Hickert, L. R., Sehnem, N. T., Souza-Cruz P. B.; Rosa, C. A., and Ayub, M. A. “Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their cofermentations.” Bioresource Technology, 102, 4218-4225 (2011).

[63] Chen, Y. “Development and application of co-culture for rthanol production by cofermentation of glucose and xylose: a systematic revew.” J. Ind, Microbiol. Biotechnol., 38, 581-597 (2011).

[64] Moon, H. C., Jeong, H. R. and Kim, D. H. “Bioethanol production from acid-pretreated rice hull.” Asia-Pacific Journal of Chemical Engineering, 7, 206-211 (2012).

[65] Hicker, R. L., Souza-Cruz, P. B., Rosa, C. A., Ayub, M. A. Z. “Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol.” Bioresource Technology, 143, 112-116 (2013).

[66] Nichols, N. N., Hector, R. E., Saha, B. C., Frazer, S. E. and Kennedy, G. J. “Biological abatement of inhibitors in rice hull hydrolyzate and fermentation to ethanol using conventional and engineered microbes.” Biomass and Bioenergy, 67, 79-88 (2014).

[67] Rambo, M. D. “Aproveitamento da casca de arroz para produgao de xilitol e silica xerogel.” Disserta?ao (Mestrado em Quimica) - Universidade Federal de Santa Maria, (2009).

[68] Gullon, P., Moura, P., Estevea, M. P., Girio, F. M., Dominguez, H. and Parajo, J. C. “Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria.” Journal of Agricultural and Food Chemistry, 56, 7482-7487 (2008).

[69] Foo K.Y. and Hameed B.H “The environmental applications of activated carbon/zeolite composite materials.” Advances in Colloid and Interface Science, 162, 22-28 (2011).

[70] Turmanova, S. Genieva, S. and Vlaev, L. “Obtaining Some Polymer Composites Filled with Rice Husks Ash-A Review.” International Journal of Chemistry, 4, 4 (20120.

[71] Aggarwal1, P. K., Chauhan1, S., Raghu1, N., Karmarkar, S. and Shashidhar, G. M. “Mechanical properties of bio-fibers-reinforced high-density polyethylene composites: effect of coupling agents and bio-fillers.” Journal of Reinforced Plastics and Composites 32, 22, 1722-1732 (2013).

[72] Khalil, H. P. S A., Tehrani, M. A., Davoudpour, Y., Bhat, A. H., Jawaid, M. M. and Hassan, A. “Natural fiber reinforced poly(vinyl chloride) composites: A review.” Journal of Reinforced Plastics and Composites 32, 330-356 (2013).

[73] Petchwattana, N., Covavisaruch, S. and Chanakul, S. “Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene.” Polym Reseasrch, 19, 9921-9925 (2012).

[74] Ma, Y., Zhao, X., Chen, X. and Wang, Z. “An approach to improve the application of acid-insoluble lignin from rice hull in phenol-formaldehyde resin.” Colloids and Surfaces A: Physicochem, Eng. Aspects, 377, 284-289 (2011).

[75] Adela, A. M. and El-shinnawy, N. A. “Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues.” International Journal of Biological Macromolecules, 51, 1091- 1102 (2012).

[76] Ibrahim, M. M., El-Zawawy, W. K., Juttke, Y., Koschella, A. and Heinze, T. “ Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization.” Cellulose, 20, 2403-2416 (2013).

[77] Brinchia, L., Cotanaa, F., Fortunatib and Kenny, E. M. “Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications.” Carbohydrate Polymers, 94, 154- 169 (2013).

[78] Khalil, H.P.S. A., Davoudpoura, Y., Islama, M. N., Mustaphaa, A., Sudeshd, K., Dungania, R. and Jawaidb, M. “Production and modification of nanofibrillated cellulose using various mechanical processes: A review.” Carbohydrate Polymers, 99, 649- 665 (2014).

ISBN: 978-1-63482-359-3 © 2015 Nova Science Publishers, Inc.

In: Agricultural Wastes Editor: Camille N. Foster

 
Source
< Prev   CONTENTS   Source   Next >