Acknowledgments

Grants from Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad de Buenos Aires (UBA), and Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCYT - FONCYT) from Argentina, are gratefully acknowledged.

References

Anesini, C., Ferraro, G., Filip, R. 2006. Peroxidase-like activity of Ilexparaguariensis. Food Chemistry 97, 459-464.

Baccar, R., Sarra, M., Bouzid, J., Feki, M., Blanquez, P. 2012. Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical Engineering Journal 211-212, 310-317.

Baggio, P., Baratieri, M., Gasparella, A., Longo, G.A. 2008. Energy and Environmental Analysis of an Innovative System Based on Municipal Solid Waste (MSW) Pyrolysis and Combined Cycle, Applied Thermal Engineering, 28, 136-144.

Balci, S., Dogu, T., Yucel, H. 1993. Pyrolysis kinetics of lignocellulosic materials. Industrial Engineering Chemistry Research, 32, 2573-2579.

Basso, M.C., Cerrella, E.G., Cukierman, A.L. 2002. Activated carbons developed from a rapidly renewable biosource for removal of cadmium (II) and nickel (II) ions from dilute aqueous solutions. Industrial and Engineering Chemistry Research, 41, 180-189.

Basso, M. C., Cukierman, A. L. 2005a. Arundo donax-based activated carbons for aqueous- hase adsorption of volatile organic compounds. Industrial and Engineering Chemistry Research, 44, 2091-2100.

Basso, M.C., Cerrella, E.G., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L. 2005b. Thermochemical conversion of Arundo donax into useful solid products. Energy Sources, 27, 1429-1438.

Basso, M.C., Cukierman, A.L. 2006. Wastewater treatment by chemically activated carbons from giant reed: effect of the activation atmosphere on properties and adsorptive behavior. Separation Science & Technology, 41, 149-156.

Blanco Castro, J., Bonelli, P.R., Cerrella, E.G., Cukierman, A.L. 2000. Phosphoric acid activation of agricultural residues and bagasse from sugar cane: influence of the experimental conditions on adsorption characteristics of activated carbons. Industrial and Engineering Chemistry Research, 39, 4166-4172.

Bonelli, P.R., Della Rocca, P.A., Cerrella, E.G., Cukierman, A.L. 2001a. Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil nut shells. Bioresource Technology, Volume 76, 15-22.

Bonelli, P.R., Della Rocca, P.A., Cerrella, E.G., Cukierman, A.L. 2001b. Comparative study on char properties and pyrolysis kinetics of different lignocellulosic wastes. In “Progress in Thermochemical Biomass Conversion”. Editor A.V. Bridgewater. Blackwell Science, London, UK. Volume 2, 1116 - 1128.

Bonelli, P.R., Cerrella, E.G., Cukierman, A.L. 2003. Slow pyrolysis of nutshells: characterization of derived chars and of process kinetics. Energy Sources, 25, 8, 767-778.

Bonelli, P.R., Buonomo, E.L., Cukierman, A.L. 2007. Pyrolysis of sugarcane bagasse and copyrolysis with an Argentinean subbituminous coal. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects, 29, 731-740.

Bonelli, P.R., Cukierman, A.L. 2012. Pyrolysis characteristics of different kinds of lignins. In “Lignin: Properties and Applications in Biotechnology and Bioenergy”. Editor Ryan J. Paterson. Nova Science Publishers Inc., N.Y., USA. Chapter 11, 355-380.

Bonelli, P.R., Nunell, G.V., Fernandez, M.E., Buonomo, E.L., Cukierman, A.L. 2012. The potential applications of the bio-char derived from the pyrolysis of an agro-industrial waste. Effects of temperature and acid-pretreatment. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects, 34, 746-755.

Bridgwater, A.V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68-94.

Braun, E.W., Ambus, P., Egsgaard, H., Hauggaard-Nielsen, H. 2012. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology & Biochemistry, 46, 73-79.

Butler, E.; Devlin, G.; Meier, D.; McDonnell, K. 2011. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews, 15, 4171-4186.

Canitrot L, Grosso MJ, Mendez A. 2011. Available: http://www.mecon.gov.ar /peconomica/docs/Complejo_Yerbatero.pdf.

Cifuentes, A.R., Avila, K., Garcia, J.C., Daza, C.E. 2013. The pyrolysis of rose stems to obtain activated carbons: A study on the adsorption of Ni(II). Ind. Eng. Chem. Res. 52, 16197-16205.

Claoston, N., Samsuri, A.W., Ahmad Husni, M.H., Mohd Amran, M.S. 2014. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management & Research, 32, 331-339.

Creamer, A.E., Gao, B., Zhang, M. 2014. Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chemical Engineering Journal, 249, 174-179.

Crombie, K., Masek, O. 2014. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., GCB Bioenergy, doi: 10.1111/gcbb.12137

Cukierman, A.L., Della Rocca, P.A., Bonelli, P.R., Cerrella, E.G. 1999. Pyrolysis of an agricultural by-product: a characterization study. In “Biomass: A Growth Opportunity in Green Energy and Value-Added Products”. Editors R.P. Overend and E. Chornet. Pergamon Elsevier Science. Volume 2, 1201-1208.

Cukierman, A.L., Nunell, G.V., Fernandez, M.E., De Celis, J., Kim, M.R., Gurevich Messina, L., Bonelli, P.R. 2012. Thermochemical processing of wood from invasive arboreal species for sustainable bioenergy generation and activated carbons production. In: “Invasive Species: Threats, Ecological Impact and Control Methods”. Eds Blanco JJ, Fernandes A. Chapter 1, 1-46. Nova Science Publishers Inc. New York, USA.

Cukierman, A.L. 2013. Development and environmental applications of activated carbon cloths. Review. ISRN Chemical Engineering. Volume 2013. Article ID 261523, 31 pages. http://dx.doi.org./10.1155 /2013/261523

De Celis, J., Amadeo, N.E., Cukierman, A.L. 2009. In situ modification of activated carbons developed from a native invasive wood on removal of trace toxic metals from wastewater. Journal of Hazardous Materials, 161, 217-223.

Della Rocca, P.A., Cerrella, E.G., Bonelli, P.R., Cukierman, A.L. 1999. Pyrolysis of hardwood residues: on kinetics and chars characterization. Biomass & Bioenergy, 16, 7988.

Di Blasi, C. 2008. Modeling Chemical and Physical Processes of Wood and Biomass pyrolysis, Progress in Energy and Combustion Science, 34, 47-90.

Di Blasi, C., Branca, C., Galgano, A. 2010. Biomass screening for the production of furfural via thermal decomposition. Industrial and Engineering Chemistry Research, 49, 26582671.

Duran-Valle, C.J., Gomez-Corzo, M., Pastor-Villegas, J. & Gomez-Serrano, V. 2005. Study of cherry stones as raw material in preparation of carbonaceous adsorbents. Journal of Analytical and Applied Pyrolysis, 73, 59-67.

El-Sayed, G.O., Yehia, M.M., Asaad, A.A. 2014. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resources and Industry, 7-8, 66-75.

Encinar, J.M., Gonzalez, J.F., Gonzalez, J. 2000. Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Processing Technology, 68, 209-222.

Encinar, J.M., Gonzalez, J.F., Martinez, G., Romam, S. 2009. Jerusalem artichoke pyrolysis: Energetic evaluation. Journal of Analytical and Applied Pyrolysis, 85, 294-300.

Fabbri, D., Torri, C., Spokas, K.A. 2012. Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production. Journal of Analytical and Applied Pyrolysis, 93, 77-84.

Fernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman A.L. 2014. Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes. Industrial Crops and Products, 62, 437-445.

Ghazi, K.A. 2013. Fuels, Energy, and the Environment. CRC Press, Taylon and Francis Group, Boca Raton, USA.

Garcia-Perez, M., Wang, X.S., Shen, J., Rhodes, M.J., Tian, F., Lee, W-J., Wu, H., Li, C. 2008. Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products. Industrial and Engineering Chemistry Research, 47, 18461854.

Girgis, B.S., Attia, A.A., Fathy, N.A. 2007. Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299, 79-87.

Gonzalez, J.F.; Ramiro, A.; Gonzalez Garcia, C.M.; Ganan, J.; Encinar, J.M.; Sabio, E.; Rubiales J. 2005. Pyrolysis of Almond Shells. Energy Applications of Fractions, Industrial and Engineering Chemistry Research, 44, 3003-3012.

Gonzalez, J., Buonomo, E., Bonelli, P., Cukierman, A.L. 2008. Pyrolysis of Biomass from Sustainable Energy Plantations: Effect of Mineral Matter Reduction on Kinetics and Charcoal Pore Structure. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 30, 809-817.

Gonzalez, J.F., Roman, S., Encinar, J.M., Martinez, G. 2009. Pyrolysis of various biomass residues and char utilization for the production of activated carbons. Journal of Analytical and Applied Pyrolysis, 85, 134-141.

Goyal, H.B., Seal, D., Saxena, R.C. 2008. Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews, 12, 504517.

Guizani, C., Escudero Sanz, F.J., Salvador, S. 2014. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel, 116, 310-320.

Guo, M., Song, W., Buhain J. 2015. Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712-725.

Heck, C.I., Schmalko, M., Gonzalez de Mejia E. 2008. Effect of growing and drying conditions on the phenolic composition of mate teas (Ilex paraguariensis). Journal of Agricultural and Food Chemistry, 56, 8394-8403.

Jand, N.; Foscolo, P.U. 2005. Decomposition of wood particles in fluidized beds. Industrial and Engineering Chemistry Research, 44, 5079-5089.

Jagtoyen, M., Derbyshire, F. 1998. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36, 1085-1097.

Kanaujia, P.K., Sharma, Y.K., Garg, M.O., Tripathi, D. Singh, R. 2014. Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. Journal of Analytical and Applied Pyrolysis 105, 55-74.

Kim, K.H., Kim, T.S., Lee, S.M., Choi, D., Yeo, H., Choi, I.G., Choi, J.W. 2013. Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis. Renewable Energy, 50, 188-195.

Kwiatkowski, J.F. (Ed.). 2011. Activated Carbon: Classifications, Properties and Applications. Nova Science Publishers Inc., N.Y., USA.

Lehmann, J., Gaunt, J., Rondon, M. 2006. Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change, 11, 403-427.

Long, H., Li, X., Wang, H., Jia, J. 2013. Biomass resources and their bioenergy potential estimation: A review, Renewable and Sustainable Energy Reviews, 26, 344-352.

Ma, Z., Chen, D., Gu, J., Bao, B., Zhang, Q. 2015. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Conversion and Management 89, 251-259.

Marsh H., Rodriguez-Reinoso F. 2006. Activated Carbon. Elsevier B.V, Amsterdam, The Netherlands.

Mezohegyi, G., van der Zee, F.P., Font, J., Fortuny, A., Fabregat, A. 2012. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. Journal of Environmental Management, 102, 148-164.

Mohan, D., Pittman, C.U., Steele, P.H. 2006. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels, 20, 848-889.

Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., Jensen, A.D. 2011. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General 407, 1-19.

Nabarlatz, D.A., De Celis, J., Bonelli, P.R., Cukierman, A.L. 2012. Batch and dynamic sorption of Ni(II) ions by activated carbon based on a native lignocellulosic precursor. Journal of Environmental Management, 97, 109-115.

Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L. 2012. Removal of nitrate from wastewater by activated carbons developed from sawdust of an invasive wood. Biomass and Bioenergy, 44, 87-95.

Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L. 2015. Nitrate uptake improvement by modified activated carbons developed from two species of pine cones. Journal of Colloids and Interface Science, 440, 102-108.

Park, Y.K., Yoo, M.L., Lee, H.W., Park, S.H., Jung, S.C., Park, S.S., Kim, SC. 2012. Effects of operation conditiones on pyrolysis characteristics of agricultural residues. Renewable Energy, 42, 125-130.

Puziy, A.M., Poddubnaya, O.I., Martinez-Alonso, A., Suarez-Garcia, F., Tascon, J.M.D. 2002. Synthetic carbons activated with phosphoric acid. I. Surface chemistry and ion binding properties. Carbon 40, 493-505.

Puziy, A.M., Poddubnaya, O.I., Martinez-Alonso, A., Castro-Muniz, A., Suarez-Garcia, F., Tascon, J.M.D. 2007. Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon 45, 1941-1950.

Qi, Z., Jie, C., Tiejun, W., Ying, X. 2007. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management 48, 87-92.

Qu, T., Guo, W., Shen, L., Xiao, J., Zhao, K. 2011. Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Industrial and Engineering Chemistry Research, 50, 10424-10433.

Ramos, M.E., Gonzalez, J.D., Bonelli, P.R., Cukierman, A.L. 2007. Effect of process conditions on physicochemical and electrical characteristics of denim-based activated carbon cloths. Industrial and Engineering Chemistry Research, 46, 1167-1173.

Ramos, M.E., Bonelli, P.R., Cukierman, A.L. 2011. Strategies for optimizing the development of cellulose-based activated carbon cloths by the chemical activation process, Chapter 17, in: Activated Carbon: Classifications, Properties and Applications. J. F. Kwiatkowski (Ed.). Nova Science Publishers Inc. N.Y., USA, 475-508.

Scipioni, G.P., Ferreyra, D.J., Acuna, M., Schmalko, M.E. 2010. Rebaudioside A release from matrices used in a yerba mate infusion. Journal of Food Engineering, 100, 627633.

Schimmelpfennig, S., Mbller, C., Gmnhage, L., Koch, C., Kammann, C. 2014. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland. Effects on greenhouse gas emissions and plant growth. Agriculture, Ecosystems and Environment, 191, 39-52.

Shi, L., Yu, S., Wang, F.C., Wang J. 2012. Pyrolytic characteristics of rice straw and its constituents catalyzed by internal alkali and alkali earth metals. Fuel, 96, 586-594.

Spokas, K.A. 2010. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Management, 1, 289-303.

Strezov, V., Evans, T.J., Hayman, C. 2008. Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresource Technology, 99, 8394-8399.

Valente Nabais, J., Carrott, P., Ribeiro Carrott, M.M.L., Luz, V., Ortiz, A.L. 2008. Influence of preparation conditions in the textural and chemical properties of activated carbons from a novel biomass precursor: The coffee endocarp. Bioresource Technology, 99, 7224-7231.

Valente Nabais, J., Laginhas, C., Ribeiro Carrott, M.M.L., Carrott, P.J.M., Crespo Amoros, J.E., Nadal Gisbert,. A.V. 2013. Surface and porous characterisation of activated carbons made from a novelbiomass precursor, the esparto grass. Applied Surface Science 265, 919- 924.

Vazquez-Santos, M.B., Suarez-Garcia, F., Martinez-Alonso, A., Tascon, J.M.D. 2012. Activated carbon fibers with a high heteroatom content by chemical activation of PBO with phosphoric acid. Langmuir, 28, 5850-5860.

Vernersson, S.T., Bonelli, P.R., Cerrella, E.G., Cukierman, A.L. 2002. Arundo donax cane as precursor for activated carbons preparation by phosphoric acid activation. Bioresource Technology, 83, 95-104.

Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A., Singh, S. 2014. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management 146, 189-197.

White, J.E., Catallo, W.J., Legendre, B.L. 2011. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91, 1-33.

Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S. 2010. Sustainable biochar to mitigate global climate change. Nature Communications. DOI: 10.1038/ncomms1053 |www.nature.com/nature communications.

Zhang, J., Liu, J., Liu, R. 2015. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresource Technology, 176, 288-291.

Zimmerman, A. 2010. Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar). Environmental Science and Technology, 44, 1295-1301.

In: Agricultural Wastes Editor: Camille N. Foster

ISBN: 978-1-63482-359-3 © 2015 Nova Science Publishers, Inc.

 
Source
< Prev   CONTENTS   Source   Next >