References

Aden, A., & Foust, T. (2009). Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose, 16(4), 535-545. doi: 10.1007/s10570-009-9327-8.

Alvira, P., Gyalai-Korpos, M., Barta, Z., Oliva, J. M., Reczey, K., & Ballesteros, M. (2013). Production and hydrolytic efficiency of enzymes from Trichoderma reeseiRUTC30 using steam pretreated wheat straw as carbon source. Journal of Chemical Technology & Biotechnology, 55(6), 1150-1156. doi:10.1002/jctb.3955.

Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257-270.

doi:10.1016/0168-1656(92)90074-J.

Bailey, M. J., & Tahtiharju, J. (2003). Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Applied Microbiology and Biotechnology, 62(2-3), 156-162. doi:10.1007/s00253-003-1276-9.

Bendig, C., & Weuster-Botz, D. (2012). Reaction engineering analysis of cellulase production with Trichoderma reesei RUT-C30 with intermittent substrate supply. Bioprocess and Biosystems Engineering, 1-8. doi:10.1007/s00449-012-0822-1.

Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Inhibition of cellulase, xylanase and |3-glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 125(2), 198-209. doi:10.1016/j.jbiotec.2006.02.021.

Bey, M., Berrin, J.-G., Poidevin, L., & Sigoillot, J.-C. (2011). Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes. Microbial Cell Factories, 10(1), 113.

Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnology Progress, 20(1), 200-206. doi:10.1021/bp0257978.

Dutta, A., Dowe, N., Ibsen, K. N., Schell, D. J., & Aden, A. (2010). An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces. Biotechnology Progress, 26(1), 64-72. doi:10.1002/btpr.311.

Flachner, B., Brumbauer, A., & Reczey, K. (1999). Stabilization of beta-glucosidase in Aspergillus phoenicis QM 329 pellets - Evalutionary implications. Enzyme and Microbial Technology, 24(5), 362-367. doi:10.1016/s0141-0229(98)00133-1.

Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. Journal of Biological Chemistry, 278(34), 31988-31997. doi:10.1074/jbc. M304750200.

Garcia-Aparicio, M., Ballesteros, I., Gonzalez, A., Oliva, J., Ballesteros, M., & Negro, M. (2006). Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 129(1-3), 278-288. doi:10.1385/ abab:129:1:278.

Ghose, T. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268.

Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: A review. Bioresource Technology, 89(1), 17-34. doi:10.1016/S0960-8524(03)00033-6.

Hari Krishna, S., Sekhar Rao, K. C., Suresh Babu, J., & Srirami Reddy, D. (2000). Studies on the production and application of cellulase from Trichoderma reesei QM-9414. Bioprocess Engineering, 22(5), 467-470. doi:10.1007/s004490050760.

Juhasz, T., Szengyel, Z., Reczey, K., Siika-Aho, M., & Viikari, L. (2005). Characterization of cel- lulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry, 40(11), 3519-3525. doi:10.1016/j.procbio.2005.03.057.

Kazi, F. K., Fortman, J. A., Anex, R. P., Hsu, D. D., Aden, A., Dutta, A., et al. (2010). Technoeconomic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 89(Suppl 1), S20-S28. doi:10.1016/j.fuel.2010.01.001.

Kovacs, K., Szakacs, G., & Zacchi, G. (2009). Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresource Technology, 100(3), 1350-1357. doi: 10.1016/j. biortech.2008.08.006.

Kumar, R., & Wyman, C. E. (2009). Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnology and Bioengineering, 102(2), 457-467. doi:10.1002/bit.22068.

Kurabi, A., Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Robinson, J., et al. (2005). Enzymatic hydrolysis of steam-exploded and ethanol organosolv-pretreated Douglas-Fir by novel and commercial fungal cellulases. In B. Davison, B. Evans, M. Finkelstein, & J. McMillan (Eds.), Twenty-sixth symposium on biotechnology for fuels and chemicals (pp. 219-230). Totowa, NJ: Humana Press.

Lee, S. H., Doherty, T. V., Linhardt, R. J., & Dordick, J. S. (2009). Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering, 102(5), 1368-1376. doi:10.1002/bit.22179.

Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26(5), 553-560. doi:10.1038/nbt1403.

Olsson, L., Christensen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 33(5), 612-619. doi:10.1016/ S0141-0229(03)00181-9.

Rahikainen, J. L., Martin-Sampedro, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., et al. (2013). Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology, 133, 270-278. doi:10.1016/j.biortech.2013.01.075.

Rana, D., Rana, V., & Ahring, B. K. (2012). Producing high sugar concentrations from loblolly pine using wet explosion pretreatment. Bioresource Technology, 121, 61-67. doi: 10.1016/j. biortech.2012.06.062.

Ryu, D. D. Y., & Mandels, M. (1980). Cellulases: Biosynthesis and applications. Enzyme and Microbial Technology, 2(2), 91-102. doi:10.1016/0141-0229(80)90063-0.

Sipos, B., Benko, Z., Dienes, D., Reczey, K., Viikari, L., & Siika-aho, M. (2010). Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Applied Biochemistry and Biotechnology, 161(1-8), 347-364. doi:10.1007/s12010-009-8824-4.

S0rensen, A., Teller, P., Lubeck, P., & Ahring, B. (2011). Onsite enzyme production during bioethanol production from biomass: Screening for suitable fungal strains. Applied Biochemistry and Biotechnology, 164(7), 1058-1070. doi:10.1007/s12010-011-9194-2.

Stockton, B. C., Mitchell, D. J., Grohmann, K., & Himmel, M. E. (1991). Optimum|3-D-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnology Letters, 13(1), 57-62. doi:10.1007/bf01033518.

Tabka, M. G., Herpoel-Gimbert, I., Monod, F., Asther, M., & Sigoillot, J. C. (2006). Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme and Microbial Technology, 39(4), 897-902. doi: 10.1016/j. enzmictec.2006.01.021.

Um, B.-H., & Walsum, G. P. (2012). Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose. Applied Biochemistry and Biotechnology, 168(2), 406-420. doi:10.1007/s12010-012-9784-7.

Wu, G., He, R., Jia, W., Chao, Y., & Chen, S. (2011). Strain improvement and process optimization of Trichderma reesei Rut C30 for enhanced cellulase production. Biofuels, 2(5), 545-555. doi:10.4155/bfs.11.124.

Zaldivar, M., Velasquez, J. C., Contreras, I., & Perez, L. M. (2001). Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: Its potential use in waste cellulose degradation and/or biocontrol. Electronic Journal of Biotechnology, 4(3), 1-9.

 
Source
< Prev   CONTENTS   Source   Next >