Alvira, P., Negro, M. J., & Ballesteros, M. (2011). Effect of endoxylanase and a-l- arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresource Technology, 102(6), 4552-4558. doi:10.1016/j.biortech.2010.12.112.

Banerjee, G., Scott-Craig, J., & Walton, J. (2010). Improving enzymes for biomass conversion: A basic research perspective. BioEnergy Research, 5(1), 82-92. doi:10.1007/s12155-009-9067-5.

Boussaid, A.-L., Esteghlalian, A., Gregg, D., Lee, K., & Saddler, J. (2000). Steam pretreatment of douglas-fir wood chips. Applied Biochemistry and Biotechnology, 84-86(1-9), 693-705. doi:10.1385/abab:84-86:1-9:693.

Boussaid, A., Robinson, J., Cai, Y.-J., Gregg, D. J., & Saddler, J. N. (1999). Fermentability of the hemicellulose-derived sugars from steam-exploded softwood (douglas fir). Biotechnology and Bioengineering, 64(3), 284-289. doi:10.1002/(sici)1097-0290(19990805)64:3


Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnology Progress, 20(1), 200-206. doi:10.1021/bp0257978.

Cullis, I. F., Saddler, J. N., & Mansfield, S. D. (2004). Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnology and Bioengineering, 85(4), 413-421. doi:10.1002/bit.10905.

Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences, 5(6), 578-595.

Garcia-Aparicio, M., Ballesteros, M., Manzanares, P., Ballesteros, I., Gonzalez, A., & Negro, M. J. (2007). Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. In J. Mielenz, K. T. Klasson, W. Adney, & J. McMillan (Eds.), Applied biochemistry and biotecnology (pp. 353-365). Totowa, NJ: Humana Press.

Gregg, D. J., & Saddler, J. N. (1996). Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering, 51(4), 375-383. doi:10.1002/(sici)1097-0290(19960820)51:4


Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937-953. doi:10.1007/s00253-006-0827-2.

Hespell, R., O’Bryan, P., Moniruzzaman, M., & Bothast, R. (1997). Hydrolysis by commercial enzyme mixtures of AFEX-treated corn fiber and isolated xylans. Applied Biochemistry and Biotechnology, 62(1), 87-97. doi:10.1007/bf02787986.

Kim, S., & Holtzapple, M. T. (2006). Effect of structural features on enzyme digestibility of corn stover. Bioresource Technology, 97(4), 583-591. doi:10.1016/j.biortech.2005.03.040.

Kumar, L., Chandra, R., Chung, P. A., & Saddler, J. (2010). Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields? Bioresource Technology, 101(20), 7827-7833. doi:10.1016/j.biortech.2010.05.023.

Kumar, R., Singh, S., & Singh, O. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 55(5), 377-391. doi:10.1007/s10295-008-0327-8.

Kumar, R., & Wyman, C. E. (2009). Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresource Technology, 100(18), 4203-4213. doi:10.1016/j.biortech.2008.11.057.

Larsson, M., Galbe, M., & Zacchi, G. (1997). Recirculation of process water in the production of ethanol from softwood. Bioresource Technology, 60(2), 143-151. doi:10.1016/


Ljungdahl, L. G. (2008). The cellulase/hemicellulase system of the anaerobic fungus Orpinomycespc-2 and aspects of its applied use. Annals of the New York Academy of Sciences, 1125(1), 308-321. doi:10.1196/annals.1419.030.

Mackie, K. L., Brownell, H. H., West, K. L., & Saddler, J. N. (1985). Effect of sulphur dioxide and sulphuric acid on steam explosion of aspenwood. Journal of Wood Chemistry and Technology, 5(3), 405-425. doi:10.1080/02773818508085202.

Merino, S., & Cherry, J. (2007a). Progress and challenges in enzyme development for biomass utilization. In L. Olsson (Ed.), Biofuels (Vol. 108, pp. 95-120). Berlin/Heidelberg: Springer.

Merino, S., & Cherry, J. (2007b). Progress and challenges in enzyme development for biomass utilization. Advances in Biochemical Engineering and Biotechnology, 108, 95-120.

Monavari, S., Galbe, M., & Zacchi, G. (2009). Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresource Technology, 100(24), 6312-6316. doi:10.1016/j.biortech.2009.06.097.

Nguyen, Q. A., & Saddler, J. N. (1991). An integrated model for the technical and economic evaluation of an enzymatic biomass conversion process. Bioresource Technology, 35(3), 275-282. doi: 10.1016/0960-8524(91)90125-4.

Palmqvist, E., & Hahn-Hagerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology, 74(1), 25-33. doi:10.1016/ S0960-8524(99)00161-3.

Persson, I., Tjerneld, F., & Hahn-Hagerdal, B. (1991). Fungal cellulolytic enzyme production: A review. Process Biochemistry, 26(2), 65-74. doi:10.1016/0032-9592(91)80019-L.

Qing, Q., & Wyman, C. (2011). Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnology for Biofuels, 4(1), 18.

Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24), 9624-9630. doi:10.1016/j. biortech.2010.06.137.

Ramos, L. P., Breuil, C., & Saddler, J. N. (1992). Comparison of steam pretreatment of eucalyptus, aspen, and spruce wood chips and their enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 34-35(1), 37-48. doi:10.1007/bf02920532.

Rana, D., Rana, V., & Ahring, B. K. (2012). Producing high sugar concentrations from loblolly pine using wet explosion pretreatment. Bioresource Technology, 121, 61-67. doi:10.1016/j. biortech.2012.06.062.

Raweesri, P., Riangrungrojana, P., & Pinphanichakarn, P. (2008). a-l-Arabinofuranosidase from Streptomyces sp. PC22: Purification, characterization and its synergistic action with xylano- lytic enzymes in the degradation of xylan and agricultural residues. Bioresource Technology, 99(18), 8981-8986. doi:10.1016/j.biortech.2008.05.016.

Ruiz, R., & Ehrman, T. (1996). Dilute acid hydrolysis procedure for determination of total sugars in the liquid fraction of process samples. Golden, CO: Laboratory Analytical Procedure.

Saddler, J. N., & Gregg, D. J. (1998). Ethanol production from forest product wastes. In A. Bruce & J. W. Palfreyman (Eds.), Forest products biotechnology (pp. 183-207). London: Taylor & Francis Ltd.

Schell, D., Nguyen, Q., Tucker, M., & Boynton, B. (1998). Pretreatment of softwood by acid-catalyzed steam explosion followed by alkali extraction. Applied Biochemistry and Biotechnology, 70-72(1), 17-24. doi: 10.1007/bf02920120.

Schwald, W., Breuil, C., Brownell, H. H., Chan, M., & Saddler, J. M. (1989). Assessment of pretreatment conditions to obtain fast complete hydrolysis on high substrate concentrations. Applied Biochemistry and Biotechnology, 20-21(1), 29-44. doi:10.1007/bf02936471.

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., & Sluiter, J. (2004). Determination of structural carbohydrates and lignin in biomass. Golden, CO: Laboratory Analytical Procedure.

Stockton, B. C., Mitchell, D. J., Grohmann, K., & Himmel, M. E. (1991). Optimum beta-D-gluco- sidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnology Letters, 13(1), 57-62. doi:10.1007/bf01033518.

Tabka, M. G., Herpoel-Gimbert, I., Monod, F., Asther, M., & Sigoillot, J. C. (2006). Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme and Microbial Technology, 39(4), 897-902. doi:10.1016/j. enzmictec.2006.01.021.

Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., et al. (1998). Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Applied Biochemistry and Biotechnology, 70-72(1), 3-15. doi: 10.1007/ bf02920119.

Tomas-Pejo, E., Oliva, J. M., Ballesteros, M., & Olsson, L. (2008). Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnology and Bioengineering, 100(6), 1122-1131. doi:10.1002/bit.21849.

Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnology Progress, 23(5), 11301137. doi:10.1021/bp070129d.

Varnai, A., Huikko, L., Pere, J., Siika-aho, M., & Viikari, L. (2011). Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresource Technology, 102(19), 9096-9104. doi:10.1016/j.biortech.2011.06.059.

von Sivers, M., & Zacchi, G. (1995). A techno-economical comparison of three processes for the production of ethanol from pine. Bioresource Technology, 51(1), 43-52. doi:10.1016/ 0960-8524(94)00094-H.

Wingreini, A., Galbe, M., Roslander, C., Rudolf, A., & Zacchi, G. (2005). Effect of reduction in yeast and enzyme concentrations in a simultaneous- saccharification-and-fermentationbased bioethanol process. In B. H. Davison, B. R. Evans, M. Finkelstein, & J. D. McMillan (Eds.), Twenty-sixth symposium on biotechnology for fuels and chemicals (pp. 485-499). Totowa, NJ: Humana Press.

Wu, M., Chang, K., Gregg, D., Boussaid, A., Beatson, R., & Saddler, J. (1999). Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwoods. Applied Biochemistry and Biotechnology, 77(1-3), 47-54. doi:10.1385/abab:77:1-3:47.

Wyman, C. E. (2007). What is (and is not) vital to advancing cellulosic ethanol. Trends in Biotechnology, 25(4), 153-157. doi:10.1016/j.tibtech.2007.02.009.

Yang, B., Boussaid, A., Mansfield, S. D., Gregg, D. J., & Saddler, J. N. (2002). Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnology and Bioengineering, 77(6), 678-684. doi:10.1002/bit.10159.

Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2(1), 26-40. doi:10.1002/bbb.49.

Yu, P., McKinnon, J. J., Maenz, D. D., Olkowski, A. A., Racz, V. J., & Christensen, D. A. (2002). Enzymic release of reducing sugars from oat hulls by cellulase, as influenced by Aspergillus ferulic acid esterase and Trichoderma xylanase. Journal of Agricultural and Food Chemistry, 51(1), 218-223. doi:10.1021/jf020476x.

Zacchi, G., & Axelsson, A. (1989). Economic evaluation of preconcentration in production of ethanol from dilute sugar solutions. Biotechnology and Bioengineering, 34(2), 223-233. doi: 10.1002/bit.260340211.

< Prev   CONTENTS   Source   Next >