Final Remarks

This article did not discuss a great deal of progress on the analogs of HTP over different kinds of functions fields. We refer the interested reader to the following surveys and collections for more information: [9, 34, 56].

References

  • 1. Colliot-Thelene, J.-L., Skorobogatov, A., & Swinnerton-Dyer, P. (1997). Double fibres and double covers: Paucity of rational points. Acta Arithmetica, 79, 113-135.
  • 2. Cornelissen,G.,Pheidas, T., &Zahidi, K. (2005). Division-ample sets and diophantine problem for rings of integers. Journal de Theorie des Nombres Bordeaux, 17, 727-735.
  • 3. Cornelissen, G., & Zahidi, K. (2000). Topology of diophantine sets: Remarks on Mazur’s conjectures. In J. Denef, L. Lipshitz, T. Pheidas & J. Van Geel (Eds.), Hilbert’s tenth problem: Relations with arithmetic and algebraic geometry, Contemporary mathematics (Vol. 270, pp. 253-260). American Mathematical Society.
  • 4. Davis, M. (1973). Hilbert’s tenth problem is unsolvable. American Mathematical Monthly, 80, 233-269.
  • 5. Davis, M.,Matiyasevich, Y., & Robinson, J. (1976). Hilbert’s tenth problem. Diophantine equations: Positive aspects of a negative solution. Proceedings of Symposium on Pure Mathematics, 28, 323- 378. American Mathematical Society.
  • 6. Denef, J. (1975). Hilbert’s tenth problem for quadratic rings. Proceedings of the American Mathematical Society, 48, 214-220.
  • 7. Denef, J. (1980). Diophantine sets of algebraic integers II. Transactions of American Mathematical Society, 257(1), 227-236.
  • 8. Denef, J., & Lipshitz, L. (1978). Diophantine sets over some rings of algebraic integers. Journal of London Mathematical Society, 18(2), 385-391.
  • 9. Denef, J., Lipshitz, L., Pheidas, T., & Van Geel, J. (Eds.). (2000). Hilbert’s tenth problem: Relations with arithmetic and algebraic geometry, Contemporary mathematics (Vol. 270). Providence, RI: American Mathematical Society. Papers from the workshop held at Ghent University, Ghent, November 2-5, 1999.
  • 10. Eisentrager, K., & Everest, G. (2009). Descent on elliptic curves and Hilbert’s tenth problem. Proceedings of the American Mathematical Society, 137(6), 1951-1959.
  • 11. Eisentrager, K., Everest, G., & Shlapentokh, A. (2011). Hilbert’s tenth problem and Mazur’s conjectures in complementary subrings of number fields. Mathematical Research Letters, 18(6), 1141-1162.
  • 12. Eisentrager, K., Miller, R., Park, J., & Shlapentokh, A. Easy as Q. Work in progress.
  • 13. Ershov, Y. L. (1996). Nice locally global fields. I. Algebra i Logika, 35(4), 411-423, 497.
  • 14. Everest, G., van der Poorten, A., Shparlinski, I., & Ward, T. (2003). Recurrence sequences (Vol. 104). Mathematical Surveys and Monographs Providence, RI: American Mathematical Society.
  • 15. Fried, M. D., Haran, D., & Volklein, H. (1994). Real Hilbertianity and the field of totally real numbers. In Arithmetic geometry (Tempe, AZ, 1993)Contemporary Mathematics (Vol. 174, pp. 1-34). Providence, RI: American Mathematical Society.
  • 16. Friedberg, R. M. (1957). Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post’s problem, 1944). Proceedings of the National Academy of Sciences U.S.A., 43, 236-238.
  • 17. Fukuzaki, K. (2012). Definability of the ring of integers in some infinite algebraic extensions of the rationals. MLQ Mathematical Logic Quarterly, 58(4-5), 317-332.
  • 18. Jarden, M., & Shlapentokh, A. On decidable fields. Work in progress.
  • 19. Koenigsmann, J. Defining Z in Q. Annals of Mathematics. To appear.
  • 20. Kronecker, L. (1857). Zwei satze uber gleichungen mit ganzzahligen coefficienten. Journal fur die Reine und Angewandte Mathematik, 53, 173-175.
  • 21. Marker, D. (2002). Model theory: An introduction, Graduate texts in mathematics (Vol. 217). New York: Springer.
  • 22. Matiyasevich, Y.V. (1993). Hilbert’s tenth problem. Foundations of computing series. Cambridge, MA: MIT Press. Translated from the 1993 Russian original by the author, With a foreword by Martin Davis.
  • 23. Mazur, B. (1992). The topology of rational points. Experimental Mathematics, 1(1), 35-45.
  • 24. Mazur, B. (1994). Questions of decidability and undecidability in number theory. Journal of Symbolic Logic, 59(2), 353-371.
  • 25. Mazur, B. (1998). Open problems regarding rational points on curves and varieties. In A. J. Scholl & R. L. Taylor (Eds.), Galois representations in arithmetic algebraic geometry. Cambridge University Press.
  • 26. Mazur, B., & Rubin, K. (2010). Ranks of twists of elliptic curves and Hilbert’s Tenth Problem. Inventiones Mathematicae, 181, 541-575.
  • 27. Muchnik, A. A. (1956). On the separability of recursively enumerable sets. Doklady Akademii NaukSSSR (N.S.), 109, 29-32.
  • 28. Park, J. A universal first order formula defining the ring of integers in a number field. To appear in Math Research Letters.
  • 29. Perlega, S. (2011). Additional results to a theorem of Eisentrager and Everest. Archiv der Mathematik (Basel), 97(2), 141-149.
  • 30. Pheidas, T. (1988). Hilbert’s tenth problem for a class of rings of algebraic integers. Proceedings of American Mathematical Society, 104(2), 611-620.
  • 31. Poonen, B. Elliptic curves whose rank does not grow and Hilbert’s Tenth Problem over the rings of integers. Private Communication.
  • 32. Poonen, B. (2002). Using elliptic curves of rank one towards the undecidability of Hilbert’s Tenth Problem over rings of algebraic integers. In C. Fieker & D. Kohel (Eds.), 7 Number theory, Lecture Notes in Computer Science (Vol. 2369, pp. 33-42). Springer.
  • 33. Poonen, B. (2003). Hilbert’s Tenth Problem and Mazur’s conjecture for large subrings of Q. Journal of AMS, 16(4), 981-990.
  • 34. Poonen, B. (2008). Undecidability in number theory. Notices of the American Mathematical Society, 55(3), 344-350.
  • 35. Poonen, B. (2009). Characterizing integers among rational numbers with a universal-existential formula. American Journal ofMathematics, 131(3), 675-682.
  • 36. Poonen, B., & Shlapentokh, A. (2005). Diophantine definability of infinite discrete nonarchimedean sets and diophantine models for large subrings of number fields. Journal fur die Reine und Angewandte Mathematik, 27-48, 2005.
  • 37. Prestel, A., & Schmid, J. (1991). Decidability of the rings of real algebraic and p-adic algebraic integers. Journal fur die Reine und Angewandte Mathematik, 414, 141-148.
  • 38. Prestel, A. (1981). Pseudo real closed fields. In Set theory and model theory (Bonn, 1979), Lecture notes in mathematics (Vol. 872, pp. 127-156). Berlin-New York: Springer.
  • 39. Robinson, J. (1949). Definability and decision problems in arithmetic. Journal of Symbolic Logic, 14, 98-114.
  • 40. Robinson, J. (1959). The undecidability of algebraic fields and rings. Proceedings of the American Mathematical Society, 10, 950-957.
  • 41. Robinson, J. (1962). On the decision problem for algebraic rings. In Studies in mathematical analysis and related topics (pp. 297-304). Stanford, Calif: Stanford University Press.
  • 42. Robinson, R. M. (1964). The undecidability of pure transcendental extensions of real fields. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 10, 275-282.
  • 43. Rogers, H. (1967). Theory of recursive functions and effective computability. New York: McGraw-Hill.
  • 44. Rohrlich, D. E. (1984). On L-functions of elliptic curves and cyclotomic towers. Inventiones Mathematicae, 75(3), 409-423.
  • 45. Rumely, R. (1980). Undecidability and definability for the theory of global fields. Transactions of the American Mathematical Society, 262(1), 195-217.
  • 46. Rumely, R. S. (1986). Arithmetic over the ring of all algebraic integers. Journal fur die Reine und Angewandte Mathematik, 368, 127-133.
  • 47. Shlapentokh, A. First order definability and decidability in infinite algebraic extensions of rational numbers. arXiv:1307.0743 [math.NT].
  • 48. Shlapentokh, A. (1989). Extension of Hilbert’s tenth problem to some algebraic number fields. Communications on Pure and Applied Mathematics, XLII, 939-962.
  • 49. Shlapentokh, A. (1994). Diophantine classes of holomorphy rings of global fields. Journal of Algebra, 169(1), 139-175.
  • 50. Shlapentokh, A. (1994). Diophantine equivalence and countable rings. Journal of Symbolic Logic, 59, 1068-1095.
  • 51. Shlapentokh, A. (1994). Diophantine undecidability in some rings of algebraic numbers of totally real infinite extensions of Q. Annals of Pure and Applied Logic, 68, 299-325.
  • 52. Shlapentokh, A. (1997). Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator. Inventiones Mathematicae, 129, 489507.
  • 53. Shlapentokh, A. (2000). Defining integrality at prime sets of high density in number fields. Duke Mathematical Journal, 101(1), 117-134.
  • 54. Shlapentokh, A. (2000). Hilbert’s tenth problem over number fields, a survey. In J. Denef, L. Lipshitz, T. Pheidas & J. Van Geel (Eds.), Hilbert’s Tenth problem: Relations with arithmetic and algebraic geometry, Contemporary mathematics (Vol. 270, pp. 107-137). American Mathematical Society.
  • 55. Shlapentokh, A. (2002). On diophantine definability and decidability in large subrings of totally real number fields and their totally complex extensions of degree 2. Journal of Number Theory, 95, 227-252.
  • 56. Shlapentokh, A. (2006). Hilbert’s Tenth problem: Diophantine classes and extensions to global fields. Cambridge University Press.
  • 57. Shlapentokh, A. (2007). Diophantine definability and decidability in the extensions of degree 2 of totally real fields. Journal of Algebra, 313(2), 846-896.
  • 58. Shlapentokh, A. (2008). Elliptic curves retaining their rank in finite extensions and Hilbert’s tenth problem for rings of algebraic numbers. Transactions of the American Mathematical Society, 360(7), 3541-3555.
  • 59. Shlapentokh, A. (2009). Rings of algebraic numbers in infinite extensions of Q and elliptic curves retaining their rank. Archive for Mathematical Logic, 48(1), 77-114.
  • 60. Shlapentokh, A. (2012). Elliptic curve points and Diophantine models of Z in large subrings of number fields. International Journal of Number Theory, 8(6), 1335-1365.
  • 61. Silverman, J. (1986). The arithmetic of elliptic curves. New York, New York: Springer.
  • 62. Tarski, T. (1986). A decision method for elementary algebra and geometry. In Collected papers, S. R. Givant & R. N. McKenzie (Eds.), Contemporary mathematicians (Vol. 3, pp. xiv+682). Basel: Birkhauser Verlag. 1945-1957.
  • 63. van den Dries, L. (1988). Elimination theory for the ring of algebraic integers. Journal fur die Reine und Angewandte Mathematik, 388, 189-205.
  • 64. Videla, C. (1999). On the constructible numbers. Proceedings ofAmerican Mathematical Society, 127(3), 851-860.
  • 65. Videla, C. (2000). Definability of the ring of integers in pro-p extensions of number fields. Israel Journal of Mathematics, 118, 1-14.
  • 66. Videla, C. R. (2000). The undecidability of cyclotomic towers. Proceedings of American Mathematical Society, 128(12), 3671-3674.
 
Source
< Prev   CONTENTS   Source   Next >