Bibliography

Alefeld, G. and Mayer, G. 2000. Interval analysis: Theory and applications. Journal of Computational and Applied Mathematics 121:421-464.

Allahviranloo, T., Mikaeilvand, N., Kiani, N. A. and Shabestari, R. M. 2008. Signed decomposition of fully fuzzy linear systems. Applications and Applied Mathematics 3(1): 77-88.

Casasnovas, J. and Riera, J. V. 2007. Maximum and minimum of discrete fuzzy numbers. Frontiers in Artificial Intelligence and Applications 163:273-280.

Chakraverty, S. and Nayak, S. 2012. Fuzzy finite element method for solving uncertain heat conduction problems. Coupled System Mechanics 1(4):345-360.

Chakraverty, S. and Nayak, S. 2013. Non probabilistic solution of uncertain neutron diffusion equation for imprecisely defined homogeneous bare reactor. Annals of Nuclear Energy 62:251-259.

Cloud, M. J., Moore, R. E. and Kearfott, R. B. 2009. Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Dong, W. and Shah, H. 1987. Vertex method for computing functions of fuzzy variables. Fuzzy Sets and Systems 24:65-78.

Dong, W. M. and Wong, F. S. 1987. Fuzzy weighted average and implementation of the extension principle. Fuzzy Sets and Systems 21:183-199.

Dubois, D. and Prade, H. 1980. Theory and Application, Fuzzy Sets and Systems. Academic Press, Waltham, MA.

Gao, L. S. 1999. The fuzzy arithmetic mean. Fuzzy Sets and Systems 107(3):335-348.

Gerald, C. F. and Wheatley, P. O. 2003. Applied Numerical Analysis, 7th edn., Pearson.

Ghoshal, S. N. 2010. Nuclear Physics. S. Chand & Co. Ltd., New Delhi, India.

Glasstone, S. and Sesonke, A. 2004. Nuclear Reactor Engineering, CBS Publishers.

Hanss, M. 2005. Applied Fuzzy Arithmetic: An Introduction with Engineering Applications. Springer, USA.

Hayes, J. G. and Allen, E. J. 2005. Stochastic point kinetic equations in nuclear reactor dynamics. Annals of Nuclear Energy 32:572-587.

Higham, D. J. 2001. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review 34:525-546.

Higham, D. J. and Kloeden, P. 2005. Numerical methods for nonlinear stochastic differential equations with jumps. Numerische Mathematik 101:101-119.

Hutton, D. V. 2005. Fundamental of Finite Element Analysis. Tata McGraw-Hill, New York.

Kim, J. H. 2005. On fuzzy stochastic differential equations, Journal of Korean Mathematical Society, 42: 153-169.

Kloeden, P. and Platen, E. 1992. Numerical Solution of Stochastic Differential Equations. Springer, Berlin, Germany.

Malinowski, M. T. and Michta, M. 2011. Stochastic fuzzy differential equations with an application. Kybernetika 47(1):123-143.

Matinfar, M., Nasseri, H. S. and Sohrabi, M. 2008. Solving fuzzy linear system of equations by using householder decomposition method. Applied Mathematical Sciences 2(52):2569-2575.

Nayak, S. and Chakraverty, S. 2013. Non-probabilistic approach to investigate uncertain conjugate heat transfer in an imprecisely defined plate. International Journal of Heat and Mass Transfer 67:445-454.

Ogura, Y. 2008. On Stochastic Differential Equations with Fuzzy Set Coefficients. Soft Methods for Handling Variability and Imprecision. Springer, Berlin, Germany.

Oksendal, B. 2003. Stochastic Differential Equations: An Introduction with Applications. Springer-Verlag, Heidelberg, Germany.

Platen, E. 1999. An introduction to numerical methods for stochastic differential equations. Acta Numerica 8:197-246.

Rumelin, W. 1982. Numerical treatment of stochastic differential equations, SIAM Journal of Numerical Analysis, 19: 604-613.

Sauer, T. 2012. Numerical Solution of Stochastic Differential Equations in Finance. Springer, USA.

Zadeh, L. A. 1965. Fuzzy sets. Information and Control 8:338-353.

Zimmermann, H. J. 1991. Fuzzy Sets Theory and Its Applications. Kluwer Academic Press, Dordrecht, the Netherlands.

 
Source
< Prev   CONTENTS   Source   Next >