# Bibliography

Alefeld, G. and Mayer, G. 2000. Interval analysis: Theory and applications. *Journal of Computational and Applied Mathematics* 121:421-464.

Allahviranloo, T., Mikaeilvand, N., Kiani, N. A. and Shabestari, R. M. 2008. Signed decomposition of fully fuzzy linear systems. *Applications and Applied Mathematics* 3(1): 77-88.

Casasnovas, J. and Riera, J. V. 2007. Maximum and minimum of discrete fuzzy numbers. *Frontiers in Artificial Intelligence and Applications* 163:273-280.

Chakraverty, S. and Nayak, S. 2012. Fuzzy finite element method for solving uncertain heat conduction problems. *Coupled System Mechanics* 1(4):345-360.

Chakraverty, S. and Nayak, S. 2013. Non probabilistic solution of uncertain neutron diffusion equation for imprecisely defined homogeneous bare reactor. *Annals of Nuclear Energy* 62:251-259.

Cloud, M. J., Moore, R. E. and Kearfott, R. B. 2009. *Introduction to Interval Analysis**.* Society for Industrial and Applied Mathematics, Philadelphia, PA.

Dong, W. and Shah, H. 1987. Vertex method for computing functions of fuzzy variables. *Fuzzy Sets and Systems* 24:65-78.

Dong, W. M. and Wong, F. S. 1987. Fuzzy weighted average and implementation of the extension principle. *Fuzzy Sets and Systems* 21:183-199.

Dubois, D. and Prade, H. 1980. *Theory and Application, Fuzzy Sets and Systems**.* Academic Press, Waltham, MA.

Gao, L. S. 1999. The fuzzy arithmetic mean. *Fuzzy Sets and Systems* 107(3):335-348.

Gerald, C. F. and Wheatley, P. O. 2003. *Applied Numerical Analysis**,* 7th edn., Pearson.

Ghoshal, S. N. 2010. *Nuclear Physics**.* S. Chand & Co. Ltd., New Delhi, India.

Glasstone, S. and Sesonke, A. 2004. *Nuclear Reactor Engineering*, CBS Publishers.

Hanss, M. 2005. *Applied Fuzzy Arithmetic: An Introduction with Engineering Applications**.* Springer, USA.

Hayes, J. G. and Allen, E. J. 2005. Stochastic point kinetic equations in nuclear reactor dynamics. *Annals of Nuclear Energy* 32:572-587.

Higham, D. J. 2001. An algorithmic introduction to numerical simulation of stochastic differential equations. *SIAM Review* 34:525-546.

Higham, D. J. and Kloeden, P. 2005. Numerical methods for nonlinear stochastic differential equations with jumps. *Numerische Mathematik* 101:101-119.

Hutton, D. V. 2005. *Fundamental of Finite Element Analysis**.* Tata McGraw-Hill, New York.

Kim, J. H. 2005. On fuzzy stochastic differential equations, *Journal of Korean Mathematical Society*, 42: 153-169.

Kloeden, P. and Platen, E. 1992. *Numerical Solution of Stochastic Differential Equations**.* Springer, Berlin, Germany.

Malinowski, M. T. and Michta, M. 2011. Stochastic fuzzy differential equations with an application. *Kybernetika* 47(1):123-143.

Matinfar, M., Nasseri, H. S. and Sohrabi, M. 2008. Solving fuzzy linear system of equations by using householder decomposition method. *Applied Mathematical Sciences* 2(52):2569-2575.

Nayak, S. and Chakraverty, S. 2013. Non-probabilistic approach to investigate uncertain conjugate heat transfer in an imprecisely defined plate. *International Journal of Heat and Mass Transfer *67:445-454.

Ogura, Y. 2008. *On Stochastic Differential Equations with Fuzzy Set Coefficients. Soft Methods for Handling Variability and Imprecision.* Springer, Berlin, Germany.

Oksendal, B. 2003. *Stochastic Differential Equations: An Introduction with Applications.* Springer-Verlag, Heidelberg, Germany.

Platen, E. 1999. An introduction to numerical methods for stochastic differential equations. *Acta Numerica* 8:197-246.

Rumelin, W. 1982. Numerical treatment of stochastic differential equations, *SIAM Journal of Numerical Analysis,* 19: 604-613.

Sauer, T. 2012. *Numerical Solution of Stochastic Differential Equations in Finance.* Springer, USA.

Zadeh, L. A. 1965. Fuzzy sets. *Information and Control* 8:338-353.

Zimmermann, H. J. 1991. *Fuzzy Sets Theory and Its Applications.* Kluwer Academic Press, Dordrecht, the Netherlands.