# Bibliography

Bart, L. S. and Hoogenboom, J. E. 2013. Dynamic Monte Carlo method for nuclear reactor kinetics calculations. *Nuclear Science and Engineering* 175:94-107.

Black, F. and Scholes, M. 1973. The pricing of options and corporate liabilities. *Journal of Political Economy* 81:637-654.

Caro-Corrales, J., Cronin, K., Abodayeh, K., Gutierrez-Lopez, G. and Ordorica-Falomir, C. 2002. Analysis of random variability in biscuit cooling. *Journal of Food Engineering* 54:147-156.

Chakraverty, S. and Nayak, S. 2013. Non probabilistic solution of uncertain neutron diffusion equation for imprecisely defined homogeneous bare reactor. *Annals of Nuclear Energy* 62:251-259.

Glasstone, S. and Sesonke, A. 2004. *Nuclear Reactor Engineering.* CBS Publishers and Distributors Private Limited, New Delhi, India.

Hayes, J. G. and Allen, E. J. 2005. Stochastic point kinetic equations in nuclear reactor dynamics. *Annals of Nuclear Energy* 32:572-587.

Hetrick, D. L. 1971. *Dynamics of Nuclear Reactors.* University of Chicago Press, USA.

Higham, D. J. 2001. An algorithmic introduction to numerical simulation of stochastic differential equations. *SIAM Review* 34:525-546.

Higham, D. J. and Kloeden, P. 2005. Numerical methods for nonlinear stochastic differential equations with jumps. *Numerische Mathematik* 101:101-119.

Kim, J. H. 2005. On fuzzy stochastic differential equations. *Journal of Korean Mathematical Society *42:153-169.

Kloeden, P. and Platen, E. 1992. *Numerical Solution of Stochastic Differential Equations.* Springer, Berlin, Germany.

Malinowski, M. T. and Michta, M. 2011. Stochastic fuzzy differential equations with an application. *Kybernetika* 47(1):123-143.

Nayak, S. and Chakraverty, S. 2013. Non-probabilistic approach to investigate uncertain conjugate heat transfer in an imprecisely defined plate. *International Journal of Heat and Mass Transfer *67:445-454.

Nayak, S. and Chakraverty, S. 2016. Numerical solution of stochastic point kinetic neutron diffusion equation with fuzzy parameters. *Nuclear Technology* 193(3):444-456.

Ogura, Y. 2008. On stochastic differential equations with fuzzy set coefficients. In: Dubois, D., et al. (eds.), *Soft Methods for Handling Variability and Imprecision,* pp. 263-270. Springer, Berlin, Germany.

Oksendal, B. 2003. *Stochastic Differential Equations: An Introduction with Applications.* Springer-Verlag, Heidelberg, Germany.

Platen, E. 1999. *An Introduction to Numerical Methods for Stochastic Differential Equations. Acta Numerica *8:197-246.

Rumelin, W. 1982. Numerical treatment of stochastic differential equations. *SIAM Journal on Numerical Analysis* 19:604-613.

Sauer, T. 2012. *Numerical Solution of Stochastic Differential Equations in Finance.* Springer, USA.

Zadeh, L. A. 1965. Fuzzy sets. *Information and Control* 8:338-353.

Zimmermann, H. J. 1991. *Fuzzy Sets Theory and Its Applications.* Kluwer Academic Press, Dordrecht, the Netherlands.