Menu
Home
Log in / Register
 
Home arrow Environment arrow Neutron diffusion : concepts and uncertainty analysis for engineers and scientists
Source

Bibliography

Bart, L. S. and Hoogenboom, J. E. 2013. Dynamic Monte Carlo method for nuclear reactor kinetics calculations. Nuclear Science and Engineering 175:94-107.

Black, F. and Scholes, M. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81:637-654.

Caro-Corrales, J., Cronin, K., Abodayeh, K., Gutierrez-Lopez, G. and Ordorica-Falomir, C. 2002. Analysis of random variability in biscuit cooling. Journal of Food Engineering 54:147-156.

Chakraverty, S. and Nayak, S. 2013. Non probabilistic solution of uncertain neutron diffusion equation for imprecisely defined homogeneous bare reactor. Annals of Nuclear Energy 62:251-259.

Glasstone, S. and Sesonke, A. 2004. Nuclear Reactor Engineering. CBS Publishers and Distributors Private Limited, New Delhi, India.

Hayes, J. G. and Allen, E. J. 2005. Stochastic point kinetic equations in nuclear reactor dynamics. Annals of Nuclear Energy 32:572-587.

Hetrick, D. L. 1971. Dynamics of Nuclear Reactors. University of Chicago Press, USA.

Higham, D. J. 2001. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review 34:525-546.

Higham, D. J. and Kloeden, P. 2005. Numerical methods for nonlinear stochastic differential equations with jumps. Numerische Mathematik 101:101-119.

Kim, J. H. 2005. On fuzzy stochastic differential equations. Journal of Korean Mathematical Society 42:153-169.

Kloeden, P. and Platen, E. 1992. Numerical Solution of Stochastic Differential Equations. Springer, Berlin, Germany.

Malinowski, M. T. and Michta, M. 2011. Stochastic fuzzy differential equations with an application. Kybernetika 47(1):123-143.

Nayak, S. and Chakraverty, S. 2013. Non-probabilistic approach to investigate uncertain conjugate heat transfer in an imprecisely defined plate. International Journal of Heat and Mass Transfer 67:445-454.

Nayak, S. and Chakraverty, S. 2016. Numerical solution of stochastic point kinetic neutron diffusion equation with fuzzy parameters. Nuclear Technology 193(3):444-456.

Ogura, Y. 2008. On stochastic differential equations with fuzzy set coefficients. In: Dubois, D., et al. (eds.), Soft Methods for Handling Variability and Imprecision, pp. 263-270. Springer, Berlin, Germany.

Oksendal, B. 2003. Stochastic Differential Equations: An Introduction with Applications. Springer-Verlag, Heidelberg, Germany.

Platen, E. 1999. An Introduction to Numerical Methods for Stochastic Differential Equations. Acta Numerica 8:197-246.

Rumelin, W. 1982. Numerical treatment of stochastic differential equations. SIAM Journal on Numerical Analysis 19:604-613.

Sauer, T. 2012. Numerical Solution of Stochastic Differential Equations in Finance. Springer, USA.

Zadeh, L. A. 1965. Fuzzy sets. Information and Control 8:338-353.

Zimmermann, H. J. 1991. Fuzzy Sets Theory and Its Applications. Kluwer Academic Press, Dordrecht, the Netherlands.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel