To download the epilepsy datasets, please visit the following websites:

  • 1. University of Bonn dataset (
  • 2. CHB-MIT dataset (
  • 3. European Epilepsy dataset (


The authors acknowledge the sources of public EEG epilepsy databases including CHB- MIT, University of Bonn, and University of Freiberg. The authors also thank the researchers involved in the studying of epileptic seizures in the Centre for Intelligent Signal and Imaging Research (CISIR).


1. Bromfield E, Cavazos J, Sirven J. An Introduction to Epilepsy [Internet]. West Hartford:

American Epilepsy Society; 2006.

  • 2. Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 2002;1(8):477-482.
  • 3. Schachter SC, Saper CB. Vagus nerve stimulation. Epilepsia. 1998;39(7):677—686.
  • 4.
  • 5. Paivinen N, Lammi S, Pitkanen A, Nissinen J, Penttonen M, Gronfors T. Epileptic seizure detection: a nonlinear viewpoint. Comput Methods Programs Biomed. 2005;79(2):151—159.
  • 6. Yuan Q, Zhou W, Liu Y, Wang J. Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav. 2012;24(4):415—421.
  • 7. Lee S-H, Lim JS, Kim J-K, Yang J, Lee Y Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Comput Methods Programs Biomed. 2014;116(1):10—25.
  • 8. Senhadji L, Wendling F. Epileptic transient detection: wavelets and time-frequency approaches. Neurophysiol Clin Neurophysiol. 2002;32(3):175—192.
  • 9. Gotman J. Automatic seizure detection: improvements and evaluation. Electroencephalogr Clin Neurophysiol. 1990;76(4):317—324.
  • 10. Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform.J Neurosci Methods. 2003;123(1):69-87.
  • 11. Adeli H, Hung S-L. Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. New York: John Wiley & Sons, Inc; 1994.
  • 12. Subasi A, Er^elebi E. Classification of EEG signals using neural network and logistic regression. Comput Methods Programs Biomed. 2005;78(2):87—99.
  • 13. Subasi A. Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst Appl. 2006;31(2):320—328.
  • 14. Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A. Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst Appl. 2011;38(8):10425-10436.
  • 15. Kumar Y, Dewal M, Anand R. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing. 2014;133: 271-279.
  • 16. Tzallas AT, Tsipouras MG, Fotiadis DI. Epileptic seizure detection in EEGs using time- frequency analysis. InfTechnol Biomed IEEE Trans. 2009;13(5):703-710.
  • 17. Das AB, Bhuiyan MIH, Alam SS. Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. SIViP. 2016;10(2):259-266.
  • 18. Hosseini SA, Akbarzadeh-T M-R, Naghibi-Sistani M-B. Methodology for epilepsy and epileptic seizure recognition using chaos analysis of brain signals. Intell Technol Techniques Pervas Comput. 2013:20.
  • 19. Hosseini SA, Akbarzadeh-T M, Naghibi-Sistani MB. Qualitative and quantitative evaluation of EEG signals in epileptic seizure recognition. Int J Intell Syst Appl. 2013;5(6):41.
  • 20. Chen G. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst Appl. 2014;41(5):2391—2394.
  • 21. Xie S, Krishnan S. Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med Biol Eng Comput. 2013;51(1—2):49—60.
  • 22. Acharya UR, Sree SV, Ang PCA, Yanti R, Suri JS. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. IntJ Neural Syst. 2012;22(02).
  • 23. Wang D, Miao D, Xie C. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl.
  • 2011;38(11):14314-14320.
  • 24. Upadhyay R, Jharia S, Padhy PK, Kankar PK. Application of wavelet fractal features for the automated detection of epileptic seizure using electroencephalogram signals. Int J

Biomed Eng Technol. 2015;19(4):355—372.

  • 25. Kumar A, Kolekar MH. Machine learning approach for epileptic seizure detection using wavelet analysis of EEG signals. Paper presented at: Medical Imaging, m-Health and Emerging Communication Systems (MedCom), International Conference on; 2014.
  • 26. Kulasuriya K, Perera M. Forecasting epileptic seizures using EEG signals, wavelet transform and artificial neural networks. Paper presented at: IT in Medicine and Education (ITME), International Symposium on; 2011.
  • 27. Bateman D. The future of neurology services in the UK. Pract Neurol. 2011;11(3):134—135.
  • 28. Amin HU, Malik AS, Kamel N, Hussain M. A novel approach based on data redundancy for feature extraction of EEG signals. Brain Topogr. 2016;29(2):207—217.
  • 29. Amin HU, Malik AS, Ahmad RF, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci

Med. 2015;38(1):139—149.

30. Liu A, Hahn J, Heldt G, Coen R. Detection of neonatal seizures through computerized

EEG analysis. Electroencephalogr Clin Neurophysiol. 1992;82(1):30—37.

  • 31. Gotman J, Flanagan D, Rosenblatt B, Bye A, Mizrahi E. Evaluation of an automatic seizure detection method for the newborn EEG. Electroencephalogr Clin Neurophysiol. 1997;103(3):363-369.
  • 32. Hassanpour H, Mesbah M, Boashash B. Time-frequency feature extraction of newborn EEG seizure using SVD-based techniques. EURASIP J Appl Signal Process. 2004: 2544-2554. 2004.
  • 33. Wilson SB, Scheuer ML, Emerson RG, Gabor AJ. Seizure detection: evaluation of the Reveal algorithm. Clin Neurophysiol. 2004;115(10):2280-2291.
  • 34. Greene BR, Boylan GB, Reilly RB, de Chazal P, Connolly S. Combination of EEG and ECG for improved automatic neonatal seizure detection. Clin Neurophysiol. 2007;118(6):1348-1359.
  • 35. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E. 2001;64(6):061907.
  • 36. Goldberger AL, Amaral LAN, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):e215-e220.
  • 37. Nasehi S, Pourghassem H. Epileptic seizure onset detection algorithm using dynamic cascade feed-forward neural networks. Paper presented at: Intelligent Computation and BioMedical Instrumentation (ICBMI), International Conference on; 2011.
< Prev   CONTENTS   Source   Next >