The authors acknowledge the financial support from the Canadian Natural Sciences and Engineering Research Council (NSERC), the Indonesian Ministry of Research, Technology, and Higher Education (RISTEKDIKTI), and the Malaysian Ministry of Higher Education (MOHE). This work is part of an international research collaboration between Laval University, Canada, Bogor Agricultural University, Indonesia and Universiti Teknologi Malaysia, Malaysia.


[1] Hench LL, Thompson I. Twenty-first century challenges for biomaterials. Journal of The Royal Society Interface 2010;7:S379-91.

[2] Brody H. Outlook on biomaterials. Nature 2015;519:S1-19.

[3] O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today 2011;14: 88-95.

[4] Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomaterialia 2012;8:3888-903.

[5] Yun Y, Dong Z, Lee N, Liu Y, Xue D, Guo X, et al. Revolutionizing biodegradable metals. Materials Today 2009;12:22-32.

[6] Hermawan H. Biodegradable metals: from concept to applications. Heidelberg: Springer; 2012.

[7] ZhengYF, Gu XN, Witte F. Biodegradable metals. Materials Science and Engineering R: Reports 2014;77:1-34.

[8] ASTM. ASTM WK52640: new guide for in-vitro degradation testing of absorbable metals, West Conshohocken. ASTM International 2016.

[9] Seiler HG, Sigel H, Sigel A. Handbook on toxicity of inorganic compounds. New York: Mercel Dekker; 1988.

[10] Fontcave M, Pierre JL. Iron: metabolism, toxicity and therapy. Biochimie 1993;73:767-73.

[11] Francis A, Yang Y, Virtanen S, Boccaccini A. Iron and iron-based alloys for temporary cardiovascular applications. Journal of Materials Science: Materials in Medicine 2015;26:1-16.

[12] Drynda A, Hassel T, Bach FW, Peuster M. In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2015;103:649-60.

[13] Yusop AH, Daud NM, Nur H, Kadir MRA, Hermawan H. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants. Scientific Reports 2015;5:11194.

[14] Schinhammer M, Hanzi AC, Loffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomaterialia 2010;6:1705-13.

[15] Huang T, Cheng Y, Zheng Y. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique. Colloids and Surfaces B: Biointerfaces 2016;142:20-9.

[16] Cheng J, Huang T, Zheng YF. Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites. Journal of Biomedical Materials Research Part A 2014;102:2277-87.

[17] Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, et al. In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Materials Science and Engineering: C 2014;36:336-44.

[18] Capek J, Vojtech D. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy. Materials Science and Engineering: C 2014;43:494-501.

[19] Daud NM, Sing NB, Yusop AH, Majid FAA, Hermawan H. Degradation and in vitro cell-material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds. Journal of Orthopaedic Translation 2014;2:177-84.

[20] Heiden M, Johnson D, Stanciu L. Surface modifications through dealloying of Fe-Mn and Fe-Mn-Zn alloys developed to create tailorable, nanoporous, bioresorbable surfaces. Acta Materialia 2016;103:115-27.

[21] Saris N-EL, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium: an update on physiological, clinical and analytical aspects. Clinica Chimica Acta 2000;294:1-26.

[22] Vormann J. Magnesium: nutrition and metabolism. Molecular Aspects of Medicine 2003;24:27-37.

[23] Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006;27:1728-34.

[24] Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia 2014;10:4561-73.

[25] Noviana D, Paramitha D, Ulum MF, Hermawan H. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. Journal of Orthopaedic Translation 2016;5:9-15.

[26] Qiao Z, Shi Z, Hort N, Zainal Abidin NI, Atrens A. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting. Corrosion Science 2012;61:185-207.

[27] Wan Y, Xiong G, Luo H, He F, Huang Y, Zhou X. Preparation and characterization of a new biomedical magnesium-calcium alloy. Materials & Design 2008;29:2034-7.

[28] Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia 2010;6:626-40.

[29] Hort N, Huang Y, Fechner D, Stormer M, Blawert C, Witte F, et al. Magnesium alloys as implant materials - principles of property design for Mg-RE alloys. Acta Biomaterialia 2010;6:1714-25.

[30] Zberg B, Uggowitzer PJ, Loffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials 2009;8:887-91.

[31] Zhang Y, Zhang G, Wei M. Controlling the biodegradation rate of magnesium using biomimetic apatite coating. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009;89B:408-14.

[32] Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010;31:2084-96.

[33] McCall KA, Huang C-c, Fierke CA. Function and mechanism of zinc metalloenzymes. The Journal of nutrition 2000;130:1437S-46S.

[34] Fosmire GJ. Zinc toxicity. The American Journal of Clinical Nutrition 1990;51:225-7.

[35] Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H. Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells. Materials Science and Engineering: C 2015;49:560-6.

[36] Shearier ER, Bowen PK, He W, Drelich A, Drelich J, Goldman J, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomaterials Science & Engineering 2016;2:634-42.

[37] Vojtech D, Kubasek J, Serak J, Novak P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomaterialia 2011;7:3515-22.

[38] Kubasek J, Vojtech D, Jablonska E, Pospisilova I, Lipov J, Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Materials Science and Engineering: C 2016;58:24-35.

[39] Mostaed E, Sikora-Jasinska M, Mostaed A, Loffredo S, Demir AG, Previtali B, et al. Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation. Journal of the Mechanical Behavior of Biomedical Materials 2016;60:581-602.

[40] Endo A, Hirayama H, Yoshida O, Arakawa T, Akima T, Yamada T, et al. Arterial remodeling influences the development of intimal hyperplasia after stent implantation. Journal of the American College of Cardiology 2001;37:70-5.

[41] Ahmad K, Katballe N, Pilegaard H. Fixation of sternal fracture using absorbable plating system, three years follow-up. Journal of Thoracic Disease 2015;7:E131-4.

[42] Salter RB. Textbook of disorders and injuries of the musculoskeletal system: an introduction to orthopaedics, fractures, and joint injuries, rheumatology, metabolic bone disease, and rehabilitation. Lippincott Williams & Wilkins; 1999.

[43] Ito K, Perren SM. Biology of fracture healing. AO principles of fracture management. AO Foundation; 2016.

[44] Pasterkamp G, de Kleijn DPV, Borst C. Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications. Cardiovascular Research 2000;45:843-52.

[45] Schwartz Md RS. Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling. The American Journal of Cardiology 1998;81:14E-7E.

[46] Kim YK, Chen EY, Liu WF. Biomolecular strategies to modulate the macrophage response to implanted materials. Journal of Materials Chemistry B 2016;4:1600-9.

[47] Yu T, Tutwiler VJ, Spiller K. The role of macrophages in the foreign body response to implanted biomaterials. Biomaterials in regenerative medicine and the immune system. Springer; 2015. p. 17-34.

[48] Witte F, Eliezer A. Biodegradable metals. In: Eliaz N, editor. Degradation of implant materials. New York, NY: Springer; 2012. p. 93-109.

[49] Xin Y, Huo K, Tao H, Tang G, Chu PK. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomaterialia 2008;4:2008-15.

[50] Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Materials Science and Engineering: C 2009;29:1559-68.

[51] Xu L, Zhu S, Huang N, Li X, Zhang Y. The corrosion of pure iron in five different mediums. Sheng wu yi xue gong cheng xue za zhi = Journal of Biomedical Engineering = Shengwu yixue gongchengxue zazhi 2009;26:783-6.

[52] Liu C, Xin Y, Tian X, Chu PK. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. Journal of Materials Research 2007;22:1806-14.

[53] Fossum TW. Small animal surgery textbook. Elsevier Health Sciences; 2013.

[54] Noviana D, Estuningsih S, Ulum MF. Animal study and pre-clinical trials of biomaterials. In: Mahyudin F, Hermawan H, editors. Biomaterials and medical devices: a perspective from an emerging country. Cham: Springer International Publishing; 2016. p. 67-101.

[55] Ulum MF, Nasution AK, Yusop AH, Arafat A, Kadir MRA, Juniantito V, et al. Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2015;103:1354-65.

[56] Schiopu D, Girard J, Soenen M, Krantz N, Migaud H. Metal ions levels measurements for early total hip replacement malfunction diagnosis with “plasma-sprayed ceramic” bearings couple. Orthopaedics & Traumatology, Surgery & Research: OTSR 2010;96:75-9.

[57] Chow J, Tobias J, Colston K, Chambers T. Estrogen maintains trabecular bone volume in rats not only by suppression of bone resorption but also by stimulation of bone formation. Journal of Clinical Investigation 1992;89:74.

[58] Seifert-Klauss V, Prior JC. Progesterone and bone: actions promoting bone health in women. Journal of Osteoporosis 2010:2010.

[59] Vanderschueren D, Sinnesael M, Gielen E, Claessens F, Boonen S. Testosterone and bone. Testosterone: Action, Deficiency, Substitution 2012:177.

[60] Fischerauer S, Kraus T, Wu X, Tangl S, Sorantin E, Hanzi A, et al. In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats. Acta Biomaterialia 2013;9:5411-20.

[61] Zhao D, Wang T, Guo X, Kuhlmann J, Doepke A, Dong Z, et al. Monitoring biodegradation of magnesium implants with sensors. JOM 2016;68:1204-8.

[62] Schaller B, Saulacic N, Imwinkelried T, Beck S, Liu EW, Gralla J, et al. In vivo degradation of magnesium plate/screw osteosynthesis implant systems: soft and hard tissue response in a calvarial model in miniature pigs. Journal of Craniomaxillofacial Surgery 2016;44:309-17.

[63] Hou L, Li Z, Pan Y, Du L, Li X, Zheng Y, et al. In vitro and in vivo studies on biodegradable magnesium alloy. Progress in Natural Science: Materials International 2014;24:466-71.

[64] Kraus T, Fischerauer SF, Hanzi AC, Uggowitzer PJ, Loffler JF, Weinberg AM. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomaterialia 2012;8:1230-8.

[65] Dziuba D, Meyer-Lindenberg A, Seitz JM, Waizy H, Angrisani N, Reifenrath J. Longterm in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. Acta Biomaterialia 2013;9:8548-60.

[66] Li HF, Xie XH, Zhao K, Wang YB, Zheng YF, Wang WH, et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomaterialia 2013;9:8561-73.

[67] Bobe K, Willbold E, Morgenthal I, Andersen O, Studnitzky T, Nellesen J, et al. In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta Biomaterialia 2013;9:8611-23.

[68] Trinca LC, Fantanariu M, Solcan C, Trofin AE, Burtan L, Acatrinei DM, et al. In vivo degradation behavior and biological activity of some new Mg-Ca alloys with concentration’s gradient of Si for bone grafts. Applied Surface Science 2015;352:140-50.

[69] Han J, Wan P, Ge Y, Fan X, Tan L, Li J, et al. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application. Materials Science and Engineering C: Materials for Biological Applications 2016;58: 799-811.

[70] Diekmann J, Bauer S, Weizbauer A, Willbold E, Windhagen H, Helmecke P, et al. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: a pilot in vivo study in rabbits. Materials Science and Engineering C: Materials for Biological Applications 2016;59:1100-9.

[71] Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E, Eichler J, et al. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomaterialia 2014;10:3346-53.

[72] Lin WJ, Zhang DY, Zhang G, Sun HT, Qi HP, Chen LP, et al. Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold. Materials & Design 2016;91:72-9.

[73] Mueller PP, Arnold S, Badar M, Bormann D, Bach FW, Drynda A, et al. Histological and molecular evaluation of iron as degradable medical implant material in a murine animal model. Journal of Biomedical Materials Research Part A 2012;100:2881-9.

[74] Pierson D, Edick J, Tauscher A, Pokorney E, Bowen P, Gelbaugh J, et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2012;100:58-67.

[75] Paramitha D, Estuningsih S, Noviana D, Ulum MF, Hermawan H. Distribution of Fe-based degradable materials in mice skeletal muscle. European Cells & Materials 2013;26:S1.

[76] Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced Materials 2013;25:2577-82.

[77] Bowen PK, Guillory 2nd RJ, Shearier ER, Seitz JM, Drelich J, Bocks M, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Materials Science and Engineering C: Materials for Biological Applications 2015;56:467-72.

[78] Noviana D, Nasution AK, Ulum MF, Hermawan H. Monitoring of early biodegradation of Fe-bioceramic composites by B-mode ultrasonography imaging in sheep animal model. European Cells & Materials 2013;26:S57.

[79] Mattoon JS, Nyland TG. Small animal diagnostic ultrasound. Elsevier Health Sciences; 2014.

[80] Boerckel JD, Mason DE, McDermott AM, Alsberg E. Microcomputed tomography: approaches and applications in bioengineering. Stem Cell Research & Therapy 2014;5:144.

[81] Larrue A, Rattner A, Peter ZA, Olivier C, Laroche N, Vico L, et al. Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone. PLoS One 2011;6:e21297.

[82] Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006;27:1013-8.

[83] Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF. Magnetic resonance imaging near metal implants. Journal of Magnetic Resonance Imaging 2010;32:773-87.

[84] Matusiewicz H. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles - a systematic analytical review. Acta Biomaterialia 2014;10:2379-403.

[85] Ragamouni S, Kumar JM, Mushahary D, Nemani H, Pande G. Histological analysis of cells and matrix mineralization of new bone tissue induced in rabbit femur bones by Mg-Zr based biodegradable implants. Acta Histochemica 2013;115:748-56.

[86] Bartsch I, Willbold E, Yarmolenko S, Witte F. In vivo fluorescence imaging of apoptosis during foreign body response. Biomaterials 2012;33:6926-32.

[87] Thrall DE. Textbook of veterinary diagnostic radiology. Elsevier Health Sciences; 2013.

[88] Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, et al. Exposure to low-dose ionizing radiation from medical imaging procedures. New England Journal of Medicine 2009;361:849-57.

[89] Liu Y, Herman BA, Soneson JE, Harris GR. Thermal safety simulations of transient temperature rise during acoustic radiation force-based ultrasound elastography. Ultrasound in Medicine & Biology 2014;40:1001-14.

[90] Kapnisis KK, Pitsillides CM, Prokopi MS, Lapathitis G, Karaiskos C, Eleftheriou PC, et al. In vivo monitoring of the inflammatory response in a stented mouse aorta model. Journal of Biomedical Materials Research Part A 2016;104:227-38.

[91] Boutry CM, Chandrahalim H, Streit P, Schinhammer M, Hanzi AC, Hierold C. Towards biodegradable wireless implants. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 2012;370:2418-32.

[92] Boutry CM, Chandrahalim H, Streit P, Schinhammer M, Hanzi AC, Hierold C. Characterization of miniaturized RLC resonators made of biodegradable materials for wireless implant applications. Sensors and Actuators A: Physical 2013;189:344-55.

[93] Schumacher S, Stahl J, Baumer W, Seitz JM, Bach FW, Petersen LJ, et al. Ex vivo examination of the biocompatibility of biodegradable magnesium via microdialysis in the isolated perfused bovine udder model. International Journal of Artificial Organs 2011;34:34-43.

[94] Ulrich A, Ott N, Tournier-Fillon A, Homazava N, Schmutz P. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control. Spectrochimica Acta - Part B Atomic Spectroscopy 2011;66:536-45.

[95] Natasha S, Malon R, Wicaksono D, Corcoles E, Hermawan H. Electrochemical detection of magnesium ions using magnesium biosensor. European Cells and Materials 2013;26:S27.

[96] Frosch K-H, Sturmer KM. Metallic biomaterials in skeletal repair. European Journal of Trauma 2006;32:149-59.

[97] Peichl P, Holzer LA, Maier R, Holzer G. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. Journal of Bone and Joint Surgery. American Volume 2011;93:1583-7.

[98] Jehle PM, Schulten K, Schulz W, Jehle DR, Stracke S, Manfras B, et al. Serum levels of insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-1 to -6 and their relationship to bone metabolism in osteoporosis patients. European Journal of Internal Medicine 2003;14:32-8.

[99] Good DM, Thongboonkerd V, Novak J, Bascands J-L, Schanstra JP, Coon JJ, et al. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. Journal of Proteome Research 2007;6:4549-55.

[100] Herr AE, Hatch AV, Throckmorton DJ, Tran HM, Brennan JS, Giannobile WV, et al. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proceedings of the National Academy of Sciences 2007;104:5268-73.

< Prev   CONTENTS   Source   Next >