Future trends/conclusions

The rapid development of techniques for assessing gene expression has exponentially expanded our knowledge of cell response at the molecular level, allowing identification of how cells regulate specific processes and behaviors. With the increasing use of biomaterials in medicine, understanding how cells respond to foreign materials from a molecular standpoint will be instrumental in development of more appropriate materials. As highlighted within this chapter, utilizing gene expression properly can be a challenging task, particularly in vivo, and the relevance of the data by itself must always be questioned. However, it is clear that gene expression technology will play a pivotal role in future years in the development of rational biomaterials for specific medical applications.


Bellows, C.G., Aubin, J.E., Heersche, J.N., Antosz, M.E., 1986. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif. Tissue Int. 38, 143-154.

Camilleri, S., McDonald, F., 2006. Runx2 and dental development. Eur. J. Oral Sci. 114, 361-373.

Chen, J., Shapiro, H.S., Sodek, J., 1992. Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J. Bone Miner. Res. 7, 987-997.

Chen, J., Singh, K., Mukherjee, B.B., Sodek, J., 1993. Developmental expression of osteopontin (OPN) mRNA in rat tissues: evidence for a role for OPN in bone formation and resorption. Matrix 13, 113-123.

Cole, J., Tsou, R., Wallace, K., Gibran, N., Isik, F., 2001. Early gene expression profile of human skin to injury using high-density cDNA microarrays. Wound Repair Regen. 9, 360-370.

Cooper, L., Johnson, C., Burslem, F., Martin, P., 2005. Wound healing and inflammation genes revealed by array analysis of ‘macrophageless’ PU.1 null mice. Genome Biol. 6, R5.

Crawford, J., Nygard, K., Gan, B.S., O’Gorman, D.B., 2014. Periostin induces fibroblast proliferation and myofibroblast persistence in hypertrophic scarring. Exp. Dermatol.

Czekanska, E.M., Stoddart, M.J., Richards, R.G., Hayes, J.S., 2012. In search of an osteoblast cell model for in vitro research. Eur. Cell Mater. 24, 1-17.

Deonarine, K., Panelli, M.C., Stashower, M.E., Jin, P., Smith, K., Slade, H.B., Norwood, C., Wang, E., Marincola, F.M., Stroncek, D.F., 2007. Gene expression profiling of cutaneous wound healing. J. Transl. Med. 5, 11.

Dutta, D., Cole, N., Willcox, M., 2012. Factors influencing bacterial adhesion to contact lenses. Mol. Vis. 18, 14-21.

Elliott, C.G., Wang, J., Guo, X., Xu, S.W., Eastwood, M., Guan, J., Leask, A., Conway, S.J., Hamilton, D.W., 2012. Periostin modulates myofibroblast differentiation during full-thickness cutaneous wound repair. J. Cell Sci. 125, 121-132.

Eming, S.A., Martin, P., Tomic-Canic, M., 2014. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr266.

Fuchs, E., Weber, K., 1994. Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345-382.

Gauglitz, G.G., Korting, H.C., Pavicic, T., Ruzicka, T., Jeschke, M.G., 2011. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol. Med. 17, 113-125.

Gilbert, S.F., 2000. Control of gene expression at the level of translation. In: Developmental Biology. Sinauer Associates, Inc., Sunderland, Massachusetts.

Golub, E.E., Boesze-Battaglia, K., 2007. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop. 18, 444-448.

Goodkind, J.R., Edwards, J.S., 2005. Gene expression measurement technologies: innovations and ethical considerations. Comput. Chem. Eng. 29, 589-596.

Groen, N., Guvendiren, M., Rabitz, H., Welsh, W.J., Kohn, J., de Boer, J., 2016. Stepping into the omics era: opportunities and challenges for biomaterials science and engineering. Acta Biomater. 34, 133-142.

Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T., 2008. Wound repair and regeneration. Nature 453, 314-321.

Hamilton, D.W., Brunette, D.M., 2007. The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. Biomaterials 28, 1806-1819.

Hanagata, N., 2015. Global gene expression analysis for the assessment of nanobiomaterials. Front. Oral Biol. 17, 78-89.

Heid, C.A., Stevens, J., Livak, K.J., Williams, P.M., 1996. Real time quantitative PCR. Genome Res. 6, 986-994.

Hinz, B., 2007. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol.

Jaiswal, N., Haynesworth, S.E., Caplan, A.I., Bruder, S.P., 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64, 295-312.

Kim, S.S., Wen, W., Prowse, P., Hamilton, D.W., 2015. Regulation of matrix remodelling phenotype in gingival fibroblasts by substratum topography. J. Cell Mol. Med. 19, 1183-1196.

Komaki, M., Iwasaki, K., Arzate, H., Narayanan, A.S., Izumi, Y., Morita, I., 2012. Cementum protein 1 (CEMP1) induces a cementoblastic phenotype and reduces osteoblastic differentiation in periodontal ligament cells. J. Cell. Physiol. 227, 649-657.

Komori, T., 2006. Regulation of osteoblast differentiation by transcription factors. J. Cell. Bio- chem. 99, 1233-1239.

Laplante, A.F., Germain, L., Auger, F.A., Moulin, V., 2001. Mechanisms of wound reepithe- lialization: hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J. 15, 2377-2389.

Lefebvre-Lavoie, J., Lussier, J.G., Theoret, C.L., 2005. Profiling of differentially expressed genes in wound margin biopsies of horses using suppression subtractive hybridization. Physiol. Genomics 22, 157-170.

Li, C., Wong, W.H., 2001. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. U.S.A. 98, 31-36.

Lim, J.Y., Donahue, H.J., 2007. Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 13, 1879-1891.

Liu, W.,F., Chen, C.S., 2005. Engineering biomaterials to control cell function. Mater.Today 8, 28-35.

Lothrop, A.P., Torres, M.P., Fuchs, S.M., 2013. Deciphering post-translational modification codes. FEBS Lett. 587, 1247-1257.

Lucas, T., Waisman, A., Ranjan, R., Roes, J., Krieg, T., Muller, W., Roers, A., Eming, S.A.,

2010. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184, 3964-3977.

Mahdavian Delavary, B., van der Veer, W.M., van Egmond, M., Niessen, F.B., Beelen, R.H.,

2011. Macrophages in skin injury and repair. Immunobiology 216, 753-762.

Martinez, F.O., Sica, A., Mantovani, A., Locati, M., 2008. Macrophage activation and polarization. Front. Biosci. 13, 453-461.

McManus, C.J., Graveley, B.R., 2011. RNA structure and the mechanisms of alternative splicing. Curr. Opin. Genet. Dev. 21, 373-379.

Michaels, J., Churgin, S.S., Blechman, K.M., Greives, M.R., Aarabi, S., Galiano, R.D., Gurtner, G.C., 2007. db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen. 15, 665-670.

Miron, R.J., Oates, C.J., Molenberg, A., Dard, M., Hamilton, D.W., 2010. The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces. Biomaterials 31, 449-460.

Morikawa, S., Ezaki, T., 2011. Phenotypic changes and possible angiogenic roles of pericytes during wound healing in the mouse skin. Histol. Histopathol. 26, 979-995.

Moura, J., Borsheim, E., Carvalho, E., 2014. The role of microRNAs in diabetic complications - special emphasis on wound healing. Genes 5, 926-956.

Nambu, M., Kishimoto, S., Nakamura, S., Mizuno, H., Yanagibayashi, S., Yamamoto, N., Azuma, R., Kiyosawa, T., Ishihara, M., Kanatani, Y., 2009. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann. Plast. Surg. 62, 317-321.

Prowse, P.D., Elliott, C.G., Hutter, J., Hamilton, D.W., 2013. Inhibition of Rac and ROCK signalling influence osteoblast adhesion, differentiation and mineralization on titanium topographies. PLoS One 8, e58898.

Roth, C.M., 2002. Quantifying gene expression. Curr. Issue. Mol. Biol. 4, 93-100.

Sakiyama-Elbert, S.E., Hubbell, J.A., 2001. Functional biomaterials: design of novel biomaterials. Annu. Rev. Mater. Res. 31, 183-201.

Schaffer, M., Barbul, A., 1998. Lymphocyte function in wound healing and following injury. Br. J. Surg. 85, 444-460.

Singer, A.J., Clark, R.A., 1999. Cutaneous wound healing. N. Engl. J. Med. 341, 738-746.

Tkalcevic, V.I., Cuzic, S., Parnham, M.J., Pasalic, I., Brajsa, K., 2009. Differential evaluation of excisional non-occluded wound healing in db/db mice. Toxicol. Pathol. 37, 183-192.

Tsuboi, R., Rifkin, D.B., 1990. Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. J. Exp. Med. 172, 245-251.

Van Slyke, P., Alami, J., Martin, D., Kuliszewski, M., Leong-Poi, H., Sefton, M.V., Dumont, D., 2009. Acceleration of diabetic wound healing by an angiopoietin peptide mimetic. Tissue Eng. Part A 15, 1269-1280.

Walker, J.T., Elliott, C.G., Forbes, T.L., Hamilton, D.W., 2016. Genetic deletion of galectin-3 does not impair full-thickness excisional skin healing. J. Invest. Dermatol. 136, 1042-1050.

Walker, J.T., Kim, S.S., Michelsons, S., Creber, K., Elliott, C.G., Leask, A., Hamilton, D.W., 2015. Cell-matrix interactions governing skin repair: matricellular proteins as diverse modulators of cell function. Res. Rep. Biochem. 5, 73-88.

Williams, D., 2003. Revisiting the definition of biocompatibility. Med. Device Technol. 14, 10-13.

Wong, M.L., Medrano, J.F., 2005. Real-time PCR for mRNA quantitation. BioTechniques 39, 75-85.

Zhang, Y., Szustakowski, J., Schinke, M., 2009. Bioinformatics analysis of microarray data. Methods Mol. Biol. 573, 259-284.

Zhou, H.M., Wang, J., Elliott, C., Wen, W., Hamilton, D.W., Conway, S.J., 2010. Spatiotempo- ral expression of periostin during skin development and incisional wound healing: lessons for human fibrotic scar formation. J. Cell Commun. Signal. 4, 99-107.

This page intentionally left blank

< Prev   CONTENTS   Source   Next >