Log in / Register
Home arrow Engineering arrow Emerging nanotechnologies for diagnostics, drug delivery and medical devices


This work was supported by NIH grant R01 AI071199. We would also like to thank Dr. Ilva D. Rupenthal for her valuable help and guidance.


[1] Bhaskar S, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood—brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010;7:3.

[2] Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 2014;6(11):1359—70.

[3] FettigJ, et al. Global epidemiology of HIV. Infect Dis Clin North Am 2014;28(3):323—37.

[4] Zhou J, et al. Novel delivery strategies for glioblastoma. Cancer J 2012;18(1):89—99.

[5] Abbott NJ, et al. Structure and function of the blood—brain barrier. Neurobiol Dis 2010;37(1):13—25.

[6] Laquintana V, et al. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 2009;6(10):1017—32.

[7] Nau R, Sorgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood—brain barrier for treatment of central nervous system infections. Clin Microbiol Rev 2010;23(4):858—83.

[8] Nakada M, et al. Aberrant signaling pathways in glioma. Cancers (Basel) 2011;3(3):3242—78.

[9] McCaffrey G, Davis TP. Physiology and pathophysiology ofthe blood—brain barrier: P-glycoprotein and occludin trafficking as therapeutic targets to optimize central nervous system drug delivery. J Investig Med 2012;60(8):1131—40.

[10] Wong AD, et al. The blood—brain barrier: an engineering perspective. Front Neuroeng 2013;6:7. [10a] Pardridge WM. Why is the global CNS pharmaceutical market so under-penetrated? Drug Discov

Today 2002;7(1):5—7.

[10b] Bradbury M, Begley DJ, Kreuter J, editors. The blood-brain barrier and drug delivery to the CNS. USA: Informa Healthcare; 2000.

[11] Sanchez-Covarrubias L, et al. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014;20(10):1422—49.

[12] de Boer AG, Gaillard PJ. Strategies to improve drug delivery across the blood—brain barrier. Clin Pharmacokinet 2007;46(7):553—76.

[13] Choi M, et al. Minimally invasive molecular delivery into the brain using optical modulation of vascular permeability. Proc Natl Acad Sci USA 2011;108(22):9256—61.

[14] Barua NU, Gill SS, Love S. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations. Brain Pathol 2014;24(2):117—27.

[15] Debinski W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother 2009;9(10):1519—27.

[16] Ferguson S, Lesniak MS. Convection enhanced drug delivery of novel therapeutic agents to malignant brain tumors. Curr Drug Deliv 2007;4(2):169—80.

[17] Healy AT, Vogelbaum MA. Convection-enhanced drug delivery for gliomas. Surg Neurol Int 2015; 6(Suppl 1):S59—67.

[18] Abbott NJ. Inflammatory mediators and modulation of blood—brain barrier permeability. Cell Mol Neurobiol 2000;20(2):131—47.

[19] Rapoport SI. Modulation of blood—brain barrier permeability. J Drug Target 1996;3(6):417—25.

[20] Gjedde A, Crone C. Biochemical modulation of blood—brain barrier permeability. Acta Neuropa- thol Suppl 1983;8:59—74.

[21] Neuwelt EA, et al. Osmotic blood—brain barrier disruption: pharmacodynamic studies in dogs and a clinical phase I trial in patients with malignant brain tumors. Cancer Treat Rep 1981;65(Suppl. 2):


[22] Neuwelt EA, et al. Effect of osmotic blood—brain barrier disruption on methotrexate pharmacokinetics in the dog. Neurosurgery 1980;7(1):36—43.

[23] Bae MJ, et al. Utilizing ultrasound to transiently increase blood—brain barrier permeability, modulate of the tight junction proteins, and alter cytoskeletal structure. Curr Neurovasc Res 2015;12(4): 375—83.

[24] Aryal M, et al. Ultrasound-mediated blood—brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev 2014;72:94—109.

[25] Burgess A, et al. Focused ultrasound-mediated drug delivery through the blood—brain barrier. Expert Rev Neurother 2015;15(5):477—91.

[26] Etame AB, et al. Focused ultrasound disruption of the blood—brain barrier: a new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus 2012;32(1):E3.

[27] Jalali S, et al. Focused ultrasound-mediated BBB disruption is associated with an increase in activation of AKT: experimental study in rats. BMC Neurol 2010;10:114.

[28] Curry FR, Adamson RH. Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc Res 2010;87(2):218—29.

[29] Melancon MP, et al. Near-infrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery. J Control Release 2011;156(2):265—72.

[30] Zhang F, Xu CL, Liu CM. Drug delivery strategies to enhance the permeability of the blood—brain barrier for treatment of glioma. Drug Des Dev Ther 2015;9:2089—100.

[31] Pardridge WM. Non-invasive drug delivery to the human brain using endogenous blood—brain barrier transport systems. Pharm Sci Technol Today 1999;2(2):49—59.

[32] Alavijeh MS, et al. Drug metabolism and pharmacokinetics, the blood—brain barrier, and central nervous system drug discovery. NeuroRx 2005;2(4):554—71.

[33] Rautio J, et al. Prodrug approaches for CNS delivery. AAPS J 2008;10(1):92—102.

[34] Albert A. Chemical aspects of selective toxicity. Nature 1958;182(4633):421—2.

[35] Han HK, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2000; 2(1):E6.

[36] Pavan B, Dalpiaz A. Prodrugs and endogenous transporters: are they suitable tools for drug targeting into the central nervous system? Curr Pharm Des 2011;17(32):3560—76.

[37] Pardridge WM. Drug transport across the blood—brain barrier. J Cereb Blood Flow Metab 2012; 32(11):1959—72.

[38] Zhu BT. On the general mechanism of selective induction of cytochrome P450 enzymes by chemicals: some theoretical considerations. Expert Opin Drug Metab Toxicol 2010;6(4):483—94.

[39] Upadhyay RK. Drug delivery systems, CNS protection, and the blood—brain barrier. Biomed Res Int 2014;2014:869269.

[40] Boado RJ, et al. Selective expression of the large neutral amino acid transporter at the blood—brain barrier. Proc Natl Acad Sci USA 1999;96(21):12079—84.

[41] Barbeau A. L-dopa therapy in Parkinson’s disease: a critical review of nine years’ experience. Can Med Assoc J 1969;101(13):59—68.

[42] Katzenschlager R, Lees AJ. Treatment of Parkinson’s disease: levodopa as the first choice. J Neurol 2002;249(Suppl. 2):II19—24.

[43] Miyake MM, Bleier BS. The blood—brain barrier and nasal drug delivery to the central nervous system. Am J Rhinol Allergy 2015;29(2):124—7.

[44] Gizurarson S. Anatomical and histological factors affecting intranasal drug and vaccine delivery. Curr Drug Deliv 2012;9(6):566—82.

[45] Hamidovic A. Position on zinc delivery to olfactory nerves in intranasal insulin phase I—III clinical trials. Contemp Clin Trials 2015;45(Pt B):277—80.

[46] Morris JK, Burns JM. Insulin: an emerging treatment for Alzheimer’s disease dementia? Curr Neurol Neurosci Rep 2012;12(5):520—7.

[47] Freiherr J, et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 2013;27(7):505—14.

[48] During MJ, et al. Controlled release of dopamine from a polymeric brain implant: in vivo characterization. Ann Neurol 1989;25(4):351—6.

[49] Tiwari G, et al. Drug delivery systems: an updated review. Int J Pharm Investig 2012;2(1):2—11.

[50] De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomed


[51] Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood—brain barrier by nanoparticles. J Control Release 2012;161(2):264—73.

[52] Micheli MR, et al. Lipid-based nanocarriers for CNS-targeted drug delivery. Recent Pat CNS Drug Discov 2012;7(1):71—86.

[53] Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012;64(7):686—700.

[54] Gomes MJ, Neves J, Sarmento B. Nanoparticle-based drug delivery to improve the efficacy ofan- tiretroviral therapy in the central nervous system. Int J Nanomed 2014;9:1757—69.

[55] Tosi G, et al. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 2008;5(2):155—74.

[56] Patel T, et al. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012;64(7):701—5.

[57] Sagar V, et al. Towards nanomedicines for neuroAIDS. Rev Med Virol 2014;24(2):103—24.

[58] Dwibhashyam VS, Nagappa AN. Strategies for enhanced drug delivery to the central nervous system. IndianJ Pharm Sci 2008;70(2):145—53.

[59] Cacciatore I, et al. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 2016:1—11.

[60] Li SD, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta 2009;1788(10):2259—66.

[61] Zhang Y, Satterlee A, Huang L. In vivo gene delivery by nonviral vectors: overcoming hurdles? Mol Ther 2012;20(7):1298—304.

[62] Dilnawaz F, Sahoo SK. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov Today 2015;20(10):1256—64.

[63] Singh D, et al. Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond) 2014; 9(4):501—16.

[64] Peng XH, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 2008;3(3):311—21.

[65] Ran Q, et al. Eryptosis indices as a novel predictive parameter for biocompatibility of Fe3O4 magnetic nanoparticles on erythrocytes. Sci Rep 2015;5:16209.

[66] Zheng W, Aschner M, Ghersi-Egea JF. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 2003;192(1):1—11.

[67] Pardridge WM. The blood—brain barrier: bottleneck in brain drug development. NeuroRx 2005; 2(1):3—14.

[68] Herve F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J 2008;10(3): 455—72.

[69] Lu W, et al. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood—brain barrier. Int J Pharm 2005;295(1—2):247—60.

[70] Lu W, et al. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer 2007;120(2):420—31.

[71] Wei X, et al. Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B 2014;4(3): 193—201.

[72] Qin Y, et al. Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm 2011;420(2):304—12.

[73] Gil ES, et al. Quaternary ammonium beta-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood—brain barrier. Biomacromolecules 2009;10(3):505—16.

[74] Uchida Y, et al. Major involvement of Na(+) _ dependent multivitamin transporter (SLC5A6/ SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells.

J Neurochem 2015;134(1):97—112.

[75] Bhardwaj RK, et al. The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells. Eur J Pharm Sci 2006;27(5):533—42.

[76] Castro M, et al. High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J Neurochem 2001;78(4):815—23.

[77] Xu S, et al. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 2013;65(1):121—38.

[78] Pardridge WM, EisenbergJ, Yang J. Human blood—brain barrier transferrin receptor. Metabolism


[79] Ueno M, et al. The expression of LDL receptor in vessels with blood—brain barrier impairment in a stroke-prone hypertensive model. Histochem Cell Biol 2010;133(6):669—76.

[80] Vu CU, et al. Nicotinic acetylcholine receptors in glucose homeostasis: the acute hyperglycemic and chronic insulin-sensitive effects of nicotine suggest dual opposing roles of the receptors in male mice. Endocrinology 2014;155(10):3793—805.

[81] Pardridge WM, EisenbergJ, Yang J. Human blood—brain barrier insulin receptor. J Neurochem 1985;44(6):1771—8.

[82] Zhang P, et al. Transferrin-modified c[RGDfK]-paclitaxel loaded hybrid micelle for sequential blood—brain barrier penetration and glioma targeting therapy. Mol Pharm 2012;9(6):1590—8.

[83] Jones AR, Shusta EV. Blood—brain barrier transport of therapeutics via receptor-mediation. Pharm

Res 2007;24(9):1759—71.

[84] Georgieva JV, Hoekstra D, Zuhorn IS. Smuggling drugs into the brain: an overview of ligands targeting transcytosis for drug delivery across the blood—brain barrier. Pharmaceutics 2014;6(4):557—83.

[85] Orthmann A, et al. Improved treatment of MT-3 breast cancer and brain metastases in a mouse xenograft by LRP-targeted oxaliplatin liposomes. J Biomed Nanotechnol 2016;12(1):56—68.

[86] Gasanov SE, Dagda RK, Rael ED. Snake venom cytotoxins, phospholipase A2s, and Zn2+-depen- dent metalloproteinases: mechanisms of action and pharmacological relevance. J Clin Toxicol 2014; 4(1):1000181.

[86a] Kumar P, et al. Transvascular delivery of small interfering RNA to the central nervous system.

Nature 2007;448(7149):39—43.

[87] van Tellingen O, et al. Overcoming the blood—brain tumor barrier for effective glioblastoma treatment. Drug Resist Updates 2015;19:1—12.

[88] Deguchi Y, Kurihara A, Pardridge WM. Retention of biologic activity of human epidermal growth factor following conjugation to a blood—brain barrier drug delivery vector via an extended poly(eth- ylene glycol) linker. Bioconjugate Chem 1999;10(1):32—7.

[89] Reardon DA, et al. Cilengitide: an integrin-targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drugs 2008;17(8):1225—35.

[90] Taylor TE, Furnari FB, Cavenee WK. Targeting EGFR for treatment ofglioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets 2012;12(3):197—209.

[91] Choi SA, et al. Human adipose tissue-derived mesenchymal stem cells target brain tumor-initiating cells. PLoS One 2015;10(6):e0129292.

[92] Biju K, et al. Macrophage-mediated GDNF delivery protects against dopaminergic neurodegeneration: a therapeutic strategy for Parkinson’s disease. Mol Ther 2010;18(8):1536—44.

[93] Tong HI, et al. Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-implication of macrophage-based drug delivery into the central nervous system. Int J Pharm 2016;505(1—2):271—82.

[94] Ali IU, Chen X. Penetrating the blood—brain barrier: promise of novel nanoplatforms and delivery vehicles. ACS Nano 2015;9(10):9470—4.

[95] Katakowski M, Chopp M. Exosomes as tools to suppress primary brain tumor. Cell Mol Neurobiol 2016;36(3):343—52.

[96] Nazarenko I, Rupp AK, Altevogt P. Exosomes as a potential tool for a specific delivery of functional molecules. Methods Mol Biol 2013;1049:495—511.

[97] Liu Y, et al. Targeted exosome-mediated delivery of opioid receptor mu siRNA for the treatment of morphine relapse. Sci Rep 2015;5:17543.

[98] Vallabhajosula S. Positron emission tomography radiopharmaceuticals for imaging brain beta- amyloid. Semin Nucl Med 2011;41(4):283—99.

[99] Amen DG, et al. Brain SPECT imaging in complex psychiatric cases: an evidence-based, underutilized tool. Open Neuroimag J 2011;5:40—8.

[100] Nelson CA. Incidental findings in magnetic resonance imaging (MRI) brain research. J Law Med Ethics 2008;36(2). p. 315—9, 213.

[101] Sharif-Alhoseini M, et al. Indications for brain computed tomography scan after minor head injury. J Emerg Trauma Shock 2011;4(4):472—6.

[102] Hochgrafe K, Mandelkow EM. Making the brain glow: in vivo bioluminescence imaging to study neurodegeneration. Mol Neurobiol 2013;47(3):868—82.

[103] Deliolanis NC, Ntziachristos V. Fluorescence molecular tomography of brain tumors in mice. Cold Spring Harb Protoc 2013;2013(5):438—43.

[104] Burton NC, et al. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. Neuroimage 2013;65:522—8.

[105] Lee B, Newberg A. Neuroimaging in traumatic brain imaging. NeuroRx 2005;2(2):372—83.

[106] Pan D, et al. Manganese-based MRI contrast agents: past, present and future. Tetrahedron 2011; 67(44):8431—44.

[107] Brasch RC, et al. Brain nuclear magnetic resonance imaging enhanced by a paramagnetic nitroxide contrast agent: preliminary report. AmJ Roentgenol 1983;141(5):1019—23.

[108] Politis M, Piccini P. Positron emission tomography imaging in neurological disorders. J Neurol 2012; 259(9):1769—80.

[109] Nelson LD, et al. Positron emission tomography of brain beta-amyloid and tau levels in adults with down syndrome. Arch Neurol 2011;68(6):768—74.

[110] Taber KH, Hillman EM, Hurley RA. Optical imaging: a new window to the adult brain. J Neuropsychiatry Clin Neurosci 2010;22(4). p. iv, 357-360.

[111] Galban CJ, et al. Applications of molecular imaging. Prog Mol Biol Transl Sci 2010;95:237—98.

[112] Culver JP, et al. Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. J Cereb Blood Flow Metab 2003;23(8):911—24.

[113] Lu FM, Yuan Z. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant Imaging Med Surg 2015;5(3):433—47.

[114] Ntziachristos V, et al. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 2002;8(7):757—60.

[115] Xia J, Yao J, Wang LV. Photoacoustic tomography: principles and advances. Electromagn Waves (Camb) 2014;147:1—22.

[116] Attia AB, et al. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma. J Biophot 2016;9(7):701—8.

[117] Nahrendorf M, et al. Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci USA 2010;107(17):7910—5.

This page intentionally left blank

Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
Business & Finance
Computer Science
Language & Literature
Political science