Menu
Home
Log in / Register
 
Home arrow Engineering arrow Emerging nanotechnologies for diagnostics, drug delivery and medical devices
Source

REFERENCES

[1] Gomes MJ, Neves J, Sarmento B. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine 2014;9:1757-69.

[2] Orkin SH, Morrison SJ. Stem-cell competition. Nature 2002;418(6893):25-7.

[3] Jiang Y, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893):41-9.

[4] Spitalieri P, et al. Human induced pluripotent stem cells for monogenic disease modelling and therapy.

World J Stem Cells 2016;8(4):118-35.

[5] Liu SV. iPS cells: a more critical review. Stem Cells Dev 2008;17(3):391-7.

[6] Metcalf D. Concise review: hematopoietic stem cells and tissue stem cells: current concepts and unanswered questions. Stem Cells 2007;25(10):2390-5.

[7] Calin M, Stan D, Simion V. Stem cell regenerative potential combined with nanotechnology and tissue engineering for myocardial regeneration. Curr Stem Cell Res Ther 2013;8(4):292-303.

[8] Wang Z, RuanJ, Cui D. Advances and prospect of nanotechnology in stem cells. Nanoscale Res Lett

2009;4(7):593—605.

[9] Ferreira L, et al. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 2008;3(2):136—46.

[10] Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J

2005;19(3):311—30.

[11] Bhana S, Wang Y, Huang X. Nanotechnology for enrichment and detection of circulating tumor cells. Nanomedicine 2015;10(12):1973—90.

[12] He J, et al. Magnetic separation techniques in sample preparation for biological analysis: a review. J Pharm Biomed Anal 2014;101:84—101.

[13] Chandra S, Nigam S, Bahadur D. Combining unique properties of dendrimers and magnetic nanoparticles towards cancer theranostics. J Biomed Nanotechnol 2014;10(1):32—49.

[14] Wang R, et al. Well-defined Peapod-like magnetic nanoparticles and their controlled modification for effective imaging guided gene therapy. ACS Appl Mater Interfaces 2016;8(18):11298—308.

[15] Jing Y, et al. Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnol Bioeng 2007;96(6):1139—54.

[16] Stuckey DW, Shah K. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer 2014;14(10):683—91.

[17] Patel S, Lee KB. Probing stem cell behavior using nanoparticle-based approaches. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7(6):759—78.

[18] Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI ofthe liver: properties, clinical development, and applications. Eur Radiol

2003;13(6):1266—76.

[19] Hsiao JK, et al. Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn Reson Med 2007;58(4):717—24.

[20] Murahari MS, Yergeri MC. Identification and usage of fluorescent probes as nanoparticle contrast agents in detecting cancer. Curr Pharm Des 2013;19(25):4622—40.

[21] Jendelova P, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 2004;76(2):232—43.

[22] Jin XH, et al. In vivo MR imaging tracking of supermagnetic iron-oxide nanoparticle-labeled bone marrow mesenchymal stem cells injected into intra-articular space of knee joints: experiment with rabbit. Zhonghua Yi Xue Za Zhi 2007;87(45):3213—8.

[23] Shen J, et al. Magnetic resonance imaging of mesenchymal stem cells labeled with dual (MR and fluorescence) agents in rat spinal cord injury. Acad Radiol 2009;16(9):1142—54.

[24] Liu Y, et al. Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/ Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury. Brain Res 2011;1391: 24—35.

[25] Danner S, et al. Quantum dots do not alter the differentiation potential of pancreatic stem cells and are distributed randomly among daughter cells. Int J Cell Biol 2013;2013, 918242.

[26] Lin S, et al. Quantum dot imaging for embryonic stem cells. BMC Biotechnol 2007;7:67.

[27] Barnett JM, PennJS, Jayagopal A. Imaging of endothelial progenitor cell subpopulations in angiogenesis using quantum dot nanocrystals. Methods Mol Biol 2013;1026:45—56.

[28] Shah B, et al. Labeling and imaging of human mesenchymal stem cells with quantum dot bioconjugates during proliferation and osteogenic differentiation in long term. Conf Proc IEEE Eng Med Biol Soc 2006;1:1470—3.

[29] Li J, et al. Multifunctional quantum dot nanoparticles for effective differentiation and long-term tracking of human mesenchymal stem cells in vitro and in vivo. Adv Healthc Mater 2016;5(9): 1049—57.

[30] Ricles LM, et al. Function of mesenchymal stem cells following loading of gold nanotracers. Int J

Nanomedicine 2011;6:407—16.

[31] Nam SY, et al. In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS One 2012;7(5):e37267.

[32] Choi CK, et al. A gold@polydopamine core-shell nanoprobe for long-term intracellular detection of microRNAs in differentiating stem cells. J Am Chem Soc 2015;137(23):7337—46.

[33] Ricles LM, et al. A dual gold nanoparticle system for mesenchymal stem cell tracking. J Mater Chem B Mater Biol Med 2014;2(46):8220—30.

[34] Accomasso L, et al. Fluorescent silica nanoparticles improve optical imaging of stem cells allowing direct discrimination between live and early-stage apoptotic cells. Small 2012;8(20):3192—200.

[35] Gallina C, et al. Human mesenchymal stem cells labelled with dye-loaded amorphous silica nanoparticles: long-term biosafety, stemness preservation and traceability in the beating heart. J Nanobiotechnology 2015;13:77.

[36] Jokerst JV, Khademi C, Gambhir SS. Intracellular aggregation of multimodal silica nanoparticles for ultrasound-guided stem cell implantation. Sci Transl Med 2013;5(177):177ra35.

[37] Novotna B, et al. The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells. Nanotoxicology 2016;10(6):662—70.

[38] Lee JK, et al. Specific labeling of neurogenic, endothelial, and myogenic differentiated cells derived from human amniotic fluid stem cells with silica-coated magnetic nanoparticles. J Vet Med Sci

2012;74(8):969—75.

[39] Sniadecki NJ, et al. Nanotechnology for cell-substrate interactions. Ann Biomed Eng 2006;34(1): 59—74.

[40] Adams GB, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006;439(7076):599—603.

[41] Dolatshahi-Pirouz A, et al. Micro- and nanoengineering approaches to control stem cell-biomaterial interactions. J Funct Biomater 2011;2(3):88—106.

[42] Dolatshahi-Pirouz A, et al. A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 2014;4:3896.

[43] Zhou Y, et al. Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater 2010;22(41):4567—90.

[44] Wang D, et al. Self-assembly of supramolecularly engineered polymers and their biomedical applications. Chem Commun 2014;50(81):11994—2017.

[45] Gelain F, et al. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3dimensional cultures. PLoS One 2006;1:e119.

[46] Koutsopoulos S, Zhang S. Long-term three-dimensional neural tissue cultures in functionalized selfassembling peptide hydrogels, matrigel and collagen I. Acta Biomater 2013;9(2):5162—9.

[47] Giri S, et al. Telomerase activity and hepatic functions of rat embryonic liver progenitor cell in nanoscaffold-coated model bioreactor. Mol Cell Biochem 2010;336(1—2):137—49.

[48] Castells-Sala C, et al. Influence of electrical stimulation on 3D-cultures of adipose tissue derived progenitor cells (ATDPCs) behavior. Conf Proc IEEE Eng Med Biol Soc 2012;2012:5658—61.

[49] Tam K, et al. A nanoscaffold impregnated with human Wharton’s jelly stem cells or its secretions improves healing of wounds. J Cell Biochem 2014;115(4):794—803.

[50] Elkhenany H, et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol 2015;35(4): 367—74.

[51] Mousavi SH, et al. Expansion of human cord blood hematopoietic stem/progenitor cells in threedimensional nanoscaffold coated with fibronectin. Int J Hematol Oncol Stem Cell Res 2015;9(2): 72—9.

[52] Aligholi H, et al. Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: a comparative methodological study. Brain Res 2016;1642:197—208.

[53] Mashhadikhan M, et al. ADSCs on PLLA/PCL hybrid nanoscaffold and gelatin modification: cyto- compatibility and mechanical properties. Avicenna J Med Biotechnol 2015;7(1):32—8.

[54] Gorjikhah F, et al. Improving “lab-on-a-chip” techniques using biomedical nanotechnology: a review. Artif Cells Nanomed Biotechnol 2016:1—6.

[55] Sciancalepore AG, et al. A bioartificial renal tubule device embedding human renal stem/progenitor cells. PLoS One 2014;9(1):e87496.

[56] Zhang YS, et al. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed

Mater 2015;10(3):034006.

[57] Jastrzebska E, Tomecka E, Jesion I. Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 2016;75:67-81.

[58] Li S, et al. Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering. Lab

Chip 2014;14(23):4475-85.

[59] Mooney E, et al. Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett 2008;8(8):2137-43.

[60] Zhu K, et al. Reprogramming fibroblasts to pluripotency using arginine-terminated polyamidoamine nanoparticles based non-viral gene delivery system. Int J Nanomedicine 2014;9:5837-47.

[61] Sohn YD, et al. Induction of pluripotency in bone marrow mononuclear cells via polyketal nanoparticle-mediated delivery of mature microRNAs. Biomaterials 2013;34(17):4235-41.

[62] Chen W, et al. Nonviral cell labeling and differentiation agent for induced pluripotent stem cells based on mesoporous silica nanoparticles. ACS Nano 2013;7(10):8423-40.

[63] Basu S, Haase G, Ben-Ze’ev A. Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Res 2016;5.

[64] Bandhavkar S. Cancer stem cells: a metastasizing menace! Cancer Med 2016;5(4):649-55.

[65] Yang M, Liu P, Huang P. Cancer stem cells, metabolism, and therapeutic significance. Tumour Biol 2016;37(5):5735-42.

[66] Papi A, Orlandi M. Role of nuclear receptors in breast cancer stem cells. WorldJ Stem Cells 2016;8(3): 62-72.

[67] Rinkenbaugh AL, Baldwin AS. The NF-kB pathway and cancer stem cells. Cells 2016;5(2).

[68] SunJH, et al. Liver cancer stem cell markers: progression and therapeutic implications. WorldJ Gastroenterol 2016;22(13):3547-57.

[69] Mutlu M, et al. miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med 2016;94(6):629-44.

[70] Liu Q, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials 2013;34(29):7191-203.

[71] Wei Q, Lei R, Hu G. Roles of miR-182 in sensory organ development and cancer. Thorac Cancer 2015;6(1):2-9.

[72] Kouri FM, et al. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 2015;29(7):732-45.

[73] Gul-Uludag H, et al. Polymeric nanoparticle-mediated silencing of CD44 receptor in CD34+ acute myeloid leukemia cells. Leuk Res 2014;38(11):1299-308.

[74] Ganesh S, et al. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 2013;34(13):3489-502.

[75] Tangudu NK, et al. RNA interference using c-Myc-conjugated nanoparticles suppresses breast and colorectal cancer models. Mol Cancer Ther 2015;14(5):1259-69.

[76] Kim SS, et al. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano 2014;8(6):5494-514.

[77] Gomez-Cabrero A, Wrasidlo W, Reisfeld RA. IMD-0354 targets breast cancer stem cells: a novel approach for an adjuvant to chemotherapy to prevent multidrug resistance in a murine model. PLoS One 2013;8(8):e73607.

This page intentionally left blank

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel