Log in / Register
Home arrow Engineering arrow Emerging nanotechnologies for diagnostics, drug delivery and medical devices


Challenges with cancer diagnosis, treatment, and emergence of multidrug-resistant phenotypes need novel personalized treatment strategies. Interdisciplinary research has helped to develop several nanotechnology-based imaging systems, sensors, and detectors that can be combined with cancer therapies to provide combinatorial advantage known as theranostics. Current research focus has been on the development of such patient- compliant imagining systems and biodetectors. Gold nanoparticles, quantum dots, iron nanoparticles, liposomes, dendrimers, and nanomicelles are now being pursued as a tool for diagnosis and imaging agent. Microcantilevers are powerful biochemical sensors that are being explored at large. Various applications of microcantilevers in disease diagnosis such as cancer, diabetes, and pathogen detection will be helpful in early detection, prevention, and treatment.


[1] Ten DamMA, Wetzels JF. Toxicity of contrast media: an update. NethJ Med 2008;66(10):416—22.

[2] Nune SK, et al. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 2009;6(11): 1175—94.

[3] Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010;62(11): 1064-79.

[4] Casciaro S. Theranostic applications: non-ionizing cellular and molecular imaging through innovative nanosystems for early diagnosis and therapy. World J Radiol 2011;3(10):249-55.

[5] Laurent S, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008;108(6):2064-110.

[6] Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 2008;3(11):397-415.

[7] Valizadeh A, et al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 2012; 7(1):480.

[8] Walling MA, Novak JA, Shepard JR. Quantum dots for live cell and in vivo imaging. Int J Mol Sci 2009;10(2):441-91.

[9] Zhou J, et al. Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid

Interface Sci 2009;331(2):251-62.

[10] BoisselierE, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009;38(6):1759-82.

[11] Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. BrJ Radiol 2012;85(1010):101-13.

[12] Huanga X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 2010;1(1):13-28.

[13] Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 2002;35(12): 1035-44.

[14] Gao F, et al. Functionalized carbon nanotube theranostic agents for microwave diagnostic imaging and thermal therapy of tumors. In: EuCAP. The Hague: IEEE; 2014. p. 691 -3.

[15] Liang H, et al. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc Chem Res 2014;47(6):1891-901.

[16] Martincic M, Tobias G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin Drug Deliv 2015;12(4):563-81.

[17] Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012;24(12):1504-34.

[18] Schulza A, McDonagh C. Intracellular sensing and cell diagnostics using fluorescent silica nanoparticles. Soft Matter 2012;8(9):2579-85.

[19] Garcia-CalzonJA, Diaz-Garcia EA. Synthesis and analytical potential of silica nanotubes. TrAC 2012; 35:27-38.

[20] Qian J, et al. Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging. Opt Express 2008;16(24):19568-78.

[21] Slowing II, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 2007;17(8):1225-36.

[22] Akbarzadeh A, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1):102.

[23] Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed 2015;10:975-99.

[24] Kim KS, et al. A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials 2014;35(1):337-43.

[25] Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006;58(14):1532-55.

[26] Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv

Rev 2002;54(5):631-51.

[27] Tian J, et al. A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy. Angew Chem Int Ed Engl 2014;53(36):9544-9.

[28] Chen HP, et al. A novel micelle-forming material used for preparing a theranostic vehicle exhibiting enhanced in vivo therapeutic efficacy. J Med Chem 2015;58(9):3704-19.

[29] Guo M, et al. Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 2014;35(16):4656-66.

[30] Abbasi E, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 2014;9(1):247.

[31] Longmire M, Choyke PL, Kobayashi H. Dendrimer-based contrast agents for molecular imaging. Curr Top Med Chem 2008;8(14):1180—6.

[32] Fahmy TM, et al. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS J 2007; 9(2):E171—80.

[33] Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007;35(Pt 1):61—7.

[34] Sinha VR, et al. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm


[35] Zheng J, Jaffray DA, Allen C. Nanosystems for multimodality in vivo imaging. In: Torchilin V, editor. Multifunctional pharmaceutical nanocarriers. New York: Springer; 2008. p. 409—30.

[36] Di Paola M, et al. Echographic imaging of tumoral cells through novel nanosystems for image diagnosis. World J Radiol 2014;6(7):459—70.

[37] Geraldes CF, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging 2009;4(1):1—23.

[38] Estelrich J, Sanchez-Martin MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomed 2015;10:1727—41.

[39] Law GL, Wong WT. An introduction to molecular imaging. In: Long N, Wong WT, editors. The chemistry of molecular imaging. Hoboken (NJ): John Wiley & Sons; 2014. p. 408.

[40] Xiao L, Yeung ES. Optical imaging ofindividual plasmonic nanoparticles in biological samples. Annu Rev Anal Chem (Palo Alto Calif) 2014;7:89—111.

[41] Chen M, et al. Nanoparticles in fluorescence optical imaging. In: Yang X, editor. Nanotechnology in modern medical imaging and interventions. Nova Science Publishers, Inc.; 2013. p. 331.

[42] CollJL. Cancer optical imaging using fluorescent nanoparticles. Nanomedicine (London) 2011;6(1): 7—10.

[43] Pansare VJ, et al. Composite fluorescent nanoparticles for biomedical imaging. Mol Imaging Biol 2014;16(2):180—8.

[44] Abeylath SC, et al. Combinatorial-designed multifunctional polymeric nanosystems for tumor- targeted therapeutic delivery. Acc Chem Res 2011;44(10):1009—17.

[45] Jiang S, Gnanasammandhan MK, Zhang Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J R Soc Interface 2010;7(42):3—18.

[46] Tobin EH. Nanotechnology applications for infectious diseases. In: Brenner S, editor. The clinical nanomedicine handbook. CRC Press; 2013. p. 365.

[47] Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc

Rev 2015;44(14):4743—68.

[48] Srivatsan A, Chen X. Recent advances in nanoparticle-based nuclear imaging ofcancers. Adv Cancer Res 2014;124:83—129.

[49] Abou DS, Pickett JE, Thorek DL. Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation. Br J Radiol 2015;88(1054):20150185.

[50] Ting G, et al. Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy. J Biomed Biotechnol 2010;2010.

[51] Xing Y, et al. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 2014;4(3): 290—306.

[52] Liu Y, Ai K, Lu L. Nanoparticulate x-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res 2012;45(10):1817—27.

[53] Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev 2013;113(3): 1641—66.

[54] Walkey CD, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 2012;134(4):2139—47.

[55] Polyak A, et al. (99m)Tc-labelled nanosystem as tumour imaging agent for SPECT and SPECT/CT modalities. Int J Pharm 2013;449(1—2):10—7.

[56] Kothapalli SVVN. Ultrasound contrast agents loaded with magnetic nanoparticles: acoustic and mechanical characterization. Stockholm, Sweden: Department of Medical Engineering, School of Technology and Health, KTH - Royal Institute of Technology; 2013.

[57] Zheng SG, Xu HX, Chen HR. Nano/microparticles and ultrasound contrast agents. World J Radiol 2013;5(12):468—71.

[58] Milgroom A, et al. Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloids Surf B Biointerfaces 2014;116:652—7.

[59] Kwon S, Wheatley MA. Gas-loaded PLA nanoparticles as ultrasound contrast agents. In: Magjarevic R, Nagel JH, editors. World congress on medical physics and biomedical engineering 2006. Springer Berlin Heidelberg; 2006. p. 275—8.

[60] Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011;31(4):


[61] Perlman O, Weitz IS, Azhari H. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys Med Biol 2015;60(15):5767—83.

[62] Clark LC. Monitor and control of blood and tissue oxygen tensions. Trans Am Soc Artif Intern Organs 1956;2:41.

[63] Updike SJ, Hicks GP. The enzyme electrode. Nature 1967;214:986—8.

[64] Mastrototaro JJ. The MiniMed continuous glucose monitoring system. Diabetes Technol Ther 2000; 2(Suppl. 1):S13—8.

[65] Diabetes Research in Children Network (DirectNet) Study Group. The accuracy of the CGMS in children with type 1 diabetes: results of the diabetes research in children. Net-work (DirectNet) accuracy study. Diabetes Technol Ther 2003;5:781—9.

[66] Diabetes Research in Children Network (DirectNet) Study Group. The accuracy of the Guardian RT continuous glucose monitor in children with type 1 diabetes. Diabetes Technol Ther 2008; 10:266—72.

[67] Mastrototaro J, Shin J, Marcus A, Sulur G, STAR, Clinical Trial Investigations. The accuracy and efficacy of real time continuous glucose monitoring sensor in patients with type 1 diabetes. Diabetes Technol Ther 2008;10:385—90.

[68] Doijad RC, et al. Formulation and targeting efficiency of Cisplatin engineered solid lipid nanoparticles. Indian J Pharm Sci 2008;70(2):203—7.

[69] Miao Y, Chen J, Wu X. Construction ofa glucose biosensor by immobilizing glucose oxidase within a poly(o-phenylenediamine) covered screen printed electrode. Online J Biol Sci 2006;6(1):18—22.

[70] Ren G, Xu X, Liu Q, Cheng J, Yuan X, Wu L, Wan Y. Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym 2006;66:1559—64.

[71] Njagi J, Andreescu S. Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites. Biosens Bioelectron 2007;23:168—75.

[72] Xian Y, Hu Y, Liu F, Xian Y, Wang H, Jin L. Glucose biosensor based on Au nanoparticles- conductive polyaniline nanocomposite. Biosens Bioelectron 2006;21:1996—2000.

[73] Wang J, Wang L, Di J, Tu Y. Disposable biosensor based on immobilization of glucose oxidase at gold nanoparticles eletrodeposited on indium tin oxide electrode. Sens Actuators 2008;135:283—8.

[74] Sato N, Okuma H. Development ofsingle-wall carbon nanotubes modified screen-printed electrode using a ferrocene-modified cationic surfactant for amperometric glucose biosensor applications. Sens Actuators 2008;B129:188—94.

[75] Manesh KM, Kim HT, Santosh P, Gopalan AI, Lee K-P. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Biosens Bioelectron 2008;23:771—9.

[76] Zou Y, Xiang C, Sun Li-X, Xu F. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosens Bioelectron 2008;23:1010—6.

[77] Wang H, Wang X, Zhang X, Qin X, Zhao Z, Miao Z, Huang N, Chen Q. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron 2009;25(1):142—6.

[78] Shoba Jeykumari DR, Sriman Narayanan S. A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Biosens Bioelectron 2008;23:1401—11.

[79] Ozcan L, Sahin Y, Turk H. Non-enzymatic glucose based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II)phthalocyanine tetrasulfonate. Biosens Bioelectron 2008;28: 512—7.

[80] Lu L-M, Zhang L, Qu F-L, Lu H-X, Zhang X-B, Wu ZS, Huan S-Y, Wang Q-A, Shen G-L, Yu R- Q. A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 2009;25:218-23.

[81] Shuttleworth R. The surface tension of solids. Proc Phys Soc Lond 1950;63A:444-57.

[82] Stoney GG. The tension of metallic films deposited by electrolysis. Proc R Soc A, Math Phys Eng Sci 1909;82:553.

[83] Wu G, et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 2001; 19(9):856-60.

[84] Lee JH, et al. Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens Bioelectron 2005;20(10):2157-62.

[85] Arntz Y, Seelig JD, Lang HP, Zhang J, Hunziker P, Ramseyer JP, Meyer E, Hegner M, Gerber C. Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 2003;14: 86-90.

[86] Battison FM, Ramseyer J-P, Lang HP, Baller MK, Gerber C, Gimzewski JK, Meyer E, Guntherodt H-J. A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens Actuators B 2001;77:122-31.

[87] Hansen KM, et al. Cantilever-based optical deflection assay for discrimination of DNA singlenucleotide mismatches. Anal Chem 2001;73(7):1567-71.

[88] McKendry R, et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci USA 2002;99(15):9783-8.

[89] Fodor SP, et al. Multiplexed biochemical assays with biological chips. Nature 1993;364(6437): 555-6.

[90] Rowe CA, et al. Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal Chem 1999;71(17):3846-52.

[91] Ilic B, et al. Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett 2005; 5(5):925-9.

[92] Nelson-Fitzpatrick N, Fischer LM, Evoy S, Ophus C, Wang Y, Mitlin D, Lee Z-H, Radmilovic V, Dahmen U. Fabrication and characterization of ultra thin resonant nanocantilevers in aluminium- molybdenum composites. In: The nanotechnology conference and trade show. CA, Boston: University of Alberta; 2006.

[93] Gupta AK, et al. Anomalous resonance in a nanomechanical biosensor. Proc Natl Acad Sci USA 2006;103(36):13362-7.

[94] Shuaipeng W, Jingjing W, Yinfang Z, Jinling Y, Fuhua Y. Cantilever with immobilized antibody for liver cancer biomarker detection. J Semicond 2014;35(10):104008.

[95] Etayash H, Jiang K, Azmi S, Thundat T, Kaur K. Real-time detection of breast cancer cells using peptide-functionalized microcantilever arrays. Sci Rep 2005;5:13967.

[96] Jianlin Z, Jiancheng Y, Xiaomei Y. A glucose biosensor based on piezoresistive microcantilevers. Solid-State and Integrated Circuit Technology (ICSICT), IEEE; 2012. p. 1-3.

[97] Pei J, Tian F, Thundat T. Glucose biosensor based on the microcantilever. Anal Chem 2004;76(2): 292-7.

[98] Pandya HJ, Roy R, Chen W, Chekmareva MA, Foran DJ, Desai JP. Accurate characterization of benign and cancerous breast tissues: aspecific patient studies using piezoresistive microcantilevers. Biosens Bioelectron 2015;63:414-24.

[99] Chen X, Pan Y, Liu H, Bai X, Wang N, Zhang B. Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor. Biosens Bioelectron 2016;79:353-8.

[100] Weeks B, Camarero J, Noy A, Miller AE, De Yoreo JJ. Development of a microcantilever-based pathogen detector. Scanning 2003;25(6):297-9.

Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
Business & Finance
Computer Science
Language & Literature
Political science