Log in / Register
Home arrow Engineering arrow Emerging nanotechnologies for diagnostics, drug delivery and medical devices


Disease diagnostics and molecular imaging are challenging subjects to pharmacologists and drug delivery scientists. The advent of nanotechnology and imaging techniques has helped us to understand the disease prognosis and yielding an efficient treatment. Imaging techniques have been a significantly improving science. A combination of nanotechnology and imaging improved the specificity, accuracy, and sensitivity for molecular imaging. Moreover, such combination is being applied in diagnosis and treatment of cancer or heart and brain diseases. For example, iron oxide nanoparticles and MRI. To improve selectivity, targeted nanocarriers with imaging techniques have been investigated. These techniques may be used to load therapeutic agents that can improve diagnosis and treatment of ailments. In the near future, such combination of technologies may lead to better, selective, and sensitive treatment modalities.


[1] Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 2012;7:4391-408.

[2] Chowdhury SR, Djordjevic J, Albensi BC, Fernyhough P. Simultaneous evaluation of substrate- dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria. Biosci Rep 2016;36(1):e00286.

[3] Graef F, Gordon S, Lehr CM. Anti-infectives in drug delivery—overcoming the gram-negative bacterial cell envelope. In: Current topics in microbiology and immunology; March 5, 2016. p. 1-22.

[4] Esposito A, Choimet JB, Skepper JN, Mauritz JM, Lew VL, Kaminski CF, et al. Quantitative imaging of human red blood cells infected with Plasmodium falciparum. Biophys J 2010;99(3): 953-60.

[5] Olmos-Serrano JL, Kang HJ, Tyler WA, SilbereisJC, Cheng F, Zhu Y, et al. Down Syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. Neuron 2016;89(6):1208-22.

[6] Choolani M, Ho SS, Razvi K, Ponnusamy S, Baig S, Fisk NM, et al. FastFISH: technique for ultrarapid fluorescence in situ hybridization on uncultured amniocytes yielding results within 2 h of amniocentesis. Mol Hum Reprod 2007;13(6):355-9.

[7] Wolff DJ, Bagg A, Cooley LD, Dewald GW, Hirsch BA, Jacky PB, et al. Guidance for fluorescence in situ hybridization testing in hematologic disorders. J Mol Diag 2007;9(2):134-43.

[8] Azofeifa J, Fauth C, Kraus J, Maierhofer C, Langer S, Bolzer A, et al. An optimized probe set for the detection of small interchromosomal aberrations by use of 24-color FISH. Am J Hum Genet 2000; 66(5):1684-8.

[9] Song L, Hennink EJ, Young IT, Tanke HJ. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 1995;68(6):2588-600.

[10] Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem 2009; 78:993-1016.

[11] Qian WY, Sun DM, Zhu RR, Du XL, Liu H, Wang SL. pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. Int J Nanomedicine 2012;7: 5781-92.

[12] Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci 2011;2(3): 118-40.

[13] Lee JH, Kim JW, Cheon J. Magnetic nanoparticles for multi-imaging and drug delivery. Mol Cells 2013;35(4):274-84.

[14] Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. Inorganic nanoparticles in cancer therapy. Pharm Res 2011;28(2):237-59.

[15] Lee J, Chatterjee DK, Lee MH, Krishnan S. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett 2014;347(1):46-53.

[16] Li K, Wen S, Larson AC, Shen M, Zhang Z, Chen Q, et al. Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer. Int J Nanomedicine


[17] Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008;60(11):1278-88.

[18] Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VS. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 2011;5(2): 1366-75.

[19] Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012;24(12):1504-34.

[20] Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility ofmesoporous silicates. Biomaterials 2008;29(30):4045-55.

[21] Liu Y, Mi Y, Zhao J, Feng SS. Multifunctional silica nanoparticles for targeted delivery of hydrophobic imaging and therapeutic agents. Int J Pharm 2011;421(2):370-8.

[22] Wang L, Tan W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett


[23] Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest


[24] Jin Y, Jia C, Huang SW, O’Donnell M, Gao X. Multifunctional nanoparticles as coupled contrast agents. Nat Commun 2010;1:41.

[25] Wu YF, Wu HC, Kuan CH, Lin CJ, Wang LW, Chang CW, et al. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci Rep 2016;6:21170.

[26] Abdullah Al N, Lee JE, In I, Lee H, Lee KD, Jeong JH, et al. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm 2013;10(10):3736-44.

[27] Wang Z, Xia J, Zhou C, Via B, Xia Y, Zhang F, et al. Synthesis of strongly green-photoluminescent graphene quantum dots for drug carrier. Colloids Surf B Biointerfaces 2013;112:192-6.

[28] Wang X, Sun X, Lao J, He H, Cheng T, Wang M, et al. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf B Biointerfaces 2014;122: 638-44.

[29] Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 2012;48(31):3686-99.

[30] Tanimoto R, Hiraiwa T, Nakai Y, Shindo Y, Oka K, Hiroi N, et al. Detection of temperature difference in neuronal cells. Sci Rep 2016;6:22071.

[31] Stosch R, Henrion A, Schiel D, Guttler B. Surface-enhanced Raman scattering based approach for quantitative determination of creatinine in human serum. Anal Chem 2005;77(22):7386-92.

[32] Lin D, Feng S, Pan J, Chen Y, Lin J, Chen G, et al. Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express 2011; 19(14):13565-77.

[33] Feng S, Chen R, Lin J, Pan J, Chen G, Li Y, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron 2010; 25(11):2414-9.

[34] Chen Y, Chen G, Feng S, Pan J, Zheng X, Su Y, et al. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis. J Biomed Opt 2012;17(6):067003.

[35] Lin J, Chen R, Feng S, Pan J, Li Y, Chen G, et al. A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomedicine 2011;7(5):655-63.

[36] Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM, et al. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 2011;71(5):1526-32.

[37] Ito H, Hasegawa K, Hasegawa Y, Nishimaki T, Hosomichi K, Kimura S, et al. Silver nanoscale hexagonal column chips for detecting cell-free DNA and circulating nucleosomes in cancer patients. Sci

Rep 2015;5:10455.

[38] Powell JA, Venkatakrishnan K, Tan B. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial. Sci Rep 2016;6: 19663.

[39] Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013;498(7452):82-6.

[40] Acuna GP, Moller FM, Holzmeister P, Beater S, Lalkens B, Tinnefeld P. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 2012;338(6106): 506-10.

[41] Matschulat A, Drescher D, Kneipp J. Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano 2010;4(6):3259-69.

[42] Gellner M, Kompe K, Schlucker S. Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules. Anal Bioanal Chem 2009;394(7):1839-44.

[43] Lee S, Chon H, Yoon SY, Lee EK, Chang SI, Lim DW, et al. Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging. Nanoscale 2012;4(1): 124-9.

[44] Li Y, Qi X, Lei C, Yue Q, Zhang S. Simultaneous SERS detection and imaging of two biomarkers on the cancer cell surface by self-assembly of branched DNA-gold nanoaggregates. Chem Commun


[45] Maitia KK, Samantab A, Vendrella M, Soha K-S, Parka S-J, Olivoa M, Changa Y-T. Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nanotoday April 2012;


[46] Kang H, Jeong S, Park Y, Yim J, Jun B-H, Kyeong S, et al. Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv Funct Mater 2013; 23:3719-27.

[47] Chen K, Yuen C, Aniweh Y, Preiser P, Liu Q. Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy. Sci Rep 2016;6:20177.

[48] Sharma B, Ma K, Glucksberg MR, Van Duyne RP. Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J Am Chem Soc 2013;135(46):17290-3.

[49] Ananta JS, Godin B, Sethi R, Moriggi L, Liu X, Serda RE, et al. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances Ti contrast. Nat Nanotechnol 2010;5(11):815-21.

[50] Karfeld-Sulzer LS, Waters EA, Kohlmeir EK, Kissler H, Zhang X, Kaufman DB, et al. Protein polymer MRI contrast agents: longitudinal analysis of biomaterials in vivo. Magn Reson Med 2011;65(1): 220-8.

[51] Chen WT, Thirumalai D, Shih TT, Chen RC, Tu SY, Lin CI, et al. Dynamic contrast-enhanced folate-receptor-targeted MR imaging using a Gd-loaded PEG-dendrimer-folate conjugate in a mouse xenograft tumor model. Mol Imaging Biol 2010;12(2):145-54.

[52] Yang H, Lu C, Liu Z, Jin H, Che Y, Olmstead MM, et al. Detection of a family of gadolinium- containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. J Am Chem Soc 2008; 130(51):17296-300.

[53] Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, et al. Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 2007;129(16): 5076-84.

[54] Silva GA. Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci 2006;7(1):65-74.

[55] Ronald JA, Chen JW, Chen Y, Hamilton AM, Rodriguez E, Reynolds F, et al. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation 2009;120(7):592-9.

[56] Querol M, Bogdanov Jr A. Amplification strategies in MR imaging: activation and accumulation of sensing contrast agents (SCAs). J Magn Reson Imaging 2006;24(5):971-82.

[57] Chen JW, Pham W, Weissleder R, Bogdanov Jr A. Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn Reson Med 2004;52(5):1021-8.

[58] Bogdanov Jr A, Matuszewski L, Bremer C, Petrovsky A, Weissleder R. Oligomerization ofparamag- netic substrates result in signal amplification and can be used for MR imaging ofmolecular targets. Mol Imaging 2002;1(1):16-23.

[59] Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000;18(3): 321-5.

[60] Kang MK, Lee GH, Jung KH, Jung JC, Kim HK, Kim YH, et al. Gadolinium nanoparticles conjugated with therapeutic bifunctional chelate as a potential T theranostic magnetic resonance imaging agent. J Biomed Nanotechnol 2016;12(5):894-908.

[61] Cao CY, Shen YY, WangJD, Li L, Liang GL. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents. Sci Rep 2013;3:1024.

[62] Li L, Tong R, Li M, Kohane DS. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy. Acta Biomater 2016;33:34-9.

[63] de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2012;2(1):39.

[64] Dams ET, Oyen WJ, Boerman OC, Storm G, Laverman P, Kok PJ, et al. 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 2000;41(4): 622-30.

[65] Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang BY, et al. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance.

Circ Cardiovasc Imaging 2010;3(4):464-72.

[66] Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 2001;7(2):243-54.

[67] Chang YJ, Chang CH, Chang TJ, Yu CY, Chen LC, Jan ML, et al. Biodistribution, pharmacokinetics and microSPECT/CT imaging of 188Re-bMEDA-liposome in a C26 murine colon carcinoma solid tumor animal model. Anticancer Res 2007;27(4B):2217-25.

[68] Petersen AL, Binderup T, Rasmussen P, Henriksen JR, Elema DR, Kjaer A, et al. 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials 2011;32(9):2334-41.

[69] Rossin R, Pan D, Qi K, Turner JL, Sun X, Wooley KL, et al. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med 2005;46(7):1210-8.

[70] Shokeen M, Fettig NM, Rossin R. Synthesis, in vitro and in vivo evaluation of radiolabeled nanoparticles. Q J Nucl Med Mol Imaging 2008;52(3):267-77.

[71] Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 2009;20(2):397-401.

[72] Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 2008; 49(8):1371-9.

[73] Xie J, Chen K, HuangJ, Lee S, WangJ, Gao J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010;31(11):3016-22.

[74] Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, et al. Nanoparticle PET- CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008;117(3):379-87.

[75] Nahrendorf M, Keliher E, Marinelli B, Leuschner F, Robbins CS, Gerszten RE, et al. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler Thromb Vasc Biol 2011;31(4):750-7.

[76] Xie H, Diagaradjane P, Deorukhkar AA, Goins B, Bao A, Phillips WT, et al. Integrin ftyfe-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int J Nanomedicine 2011;6: 259-69.

[77] Agarwal A, Shao X, Rajian JR, Zhang H, Chamberland DL, Kotov NA, et al. Dual-mode imaging with radiolabeled gold nanorods. J Biomed Opt 2011;16(5):051307.

[78] Guerrero S, Herance JR, Rojas S, Mena JF, Gispert JD, Acosta GA, et al. Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug Chem 2012;23(3):399-408.

[79] Shao X, Agarwal A, Rajian JR, Kotov NA, Wang X. Synthesis and bioevaluation of 125I-labeled gold nanorods. Nanotechnology 2011;22(13):135102.

[80] Morales-Avila E, Ferro-Flores G, Ocampo-Garcia BE, De Leon-Rodriguez LM, Santos-Cuevas CL, Garcia-Becerra R, et al. Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c [RGDfK(C)] for molecular imaging of tumor Oyfe expression. Bioconjug Chem 2011;22(5): 913-22.

[81] Pyayt AL, Fattal DA, Li Z, Beausoleil RG. Nanoengineered optical resonance sensor for composite material refractive-index measurements. Appl Opt 2009;48(14):2613-8.

[82] Xie H, Wang ZJ, Bao A, Goins B, Phillips WT. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int J Pharm 2010;395(1-2):324-30.

[83] Shao X, Zhang H, Rajian JR, Chamberland DL, Sherman PS, Quesada CA, et al. 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano 2011;5(11):8967—73.

[84] Gupta AS. Nanomedicine approaches in vascular disease: a review. Nanomedicine 2011;7(6):763—79.

[85] Talelli M, Rijcken CJ, van Nostrum CF, Storm G, Hennink WE. Micelles based on HPMA copolymers. Adv Drug Deliv Rev 2010;62(2):231—9.

[86] Zhang R, Xiong C, Huang M, Zhou M, Huang Q, Wen X, et al. Peptide-conjugated polymeric micellar nanoparticles for Dual SPECT and optical imaging of EphB4 receptors in prostate cancer xenografts. Biomaterials 2011;32(25):5872—9.

[87] Zhang R, Lu W, Wen X, Huang M, Zhou M, Liang D, et al. Annexin A5-conjugated polymeric micelles for dual SPECT and optical detection of apoptosis. J Nucl Med 2011;52(6):958—64.

[88] Bayer CL, Luke GP, Emelianov SY. Photoacoustic imaging for medical diagnostics. Acoust Today 2012;8(4):15—23.

[89] Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 2006;110(14):7238—48.

[90] Chen YS, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, et al. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express


[91] Bayer CL, Chen YS, Kim S, Mallidi S, Sokolov K, Emelianov S. Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods. Biomed Opt Express 2011;2(7):1828—35.

[92] Rich LJ, Seshadri M. Photoacoustic imaging of salivary glands. Biomed Opt Express 2015;6(9): 3157—62.

[93] Chamberland DL, Agarwal A, Kotov N, Brian Fowlkes J, Carson PL, Wang X. Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study. Nanotechnology 2008;19(9):095101.

[94] Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci

USA 2003;100(23):13549—54.

[95] Yang X, Stein EW, Ashkenazi S, Wang LV. Nanoparticles for photoacoustic imaging. Wiley Inter- discip Rev Nanomed Nanobiotechnol 2009;1(4):360—8.

[96] Cang H, Sun T, Li ZY, Chen J, Wiley BJ, Xia Y, et al. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Opt Lett 2005;30(22):3048—50.

[97] Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, et al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 2005;5(3):473—7.

[98] Kim G, Huang SW, Day KC, O’Donnell M, Agayan RR, Day MA, et al. Indocyanine-green- embedded PEBBLEs as a contrast agent for photoacoustic imaging. J Biomed Opt 2007;12(4):044020.

Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
Business & Finance
Computer Science
Language & Literature
Political science