Menu
Home
Log in / Register
 
Home arrow Engineering arrow Designing for Emerging Technologies
Source

Identify the Problems Correctly

The gap between the problems we face as a species and the seemingly unlimited potential of technologies ripe for implementation begs for considered but agile design thinking and practice. Designers should be problem identifiers, not just problem solvers searching for a solution to a pre-established set of parameters. We must seek to guide our technology, rather than just allow it to guide us.

On the cover of the November/December 2012 issue of MIT Technology Review, the shortcomings of the past decade’s technological achievements are expressed in the damning headline dramatically superimposed in white type over the bemused portrait of astronaut Buzz Aldrin: “You Promised Me Mars Colonies. Instead I Got Facebook.” The subhead elaborates tellingly: “We’ve stopped solving big problems. Meet the technologists who refuse to give up.” The accompanying article “Why We Can’t Solve Big Problems”1^ details some of the current limitations in American culture, finance, and politics that, since the Apollo moonshot, have relegated big thinking and technical aspirations to the sidelines. The author, however, concludes the following:

It’s not true that we can’t solve big problems through technology; we can. We must. But all these elements must be present: political leaders and the public must care to solve a problem, our institutions must support its solution, it must really be a technological problem, and we must understand it.

We are on the cusp of a new technological age, saddled with the problems of the previous one, demanding that as we step forward we do not make the same mistakes. To do this, we must identify the right challenges to take on: the significant and valuable ones. Chief among our concerns must be the environment, not only in reducing the carbon we release as a result of consumption and seeking new sources of energy, but also in understanding the effects of a growing global population, against the backdrop of limited resources. We must also improve human health and consider the ramifications as humans live longer lives. And, we must find new ways to manufacture goods and produce food and clean water for a planet currently with 7.2 billion inhabitants — a population that is projected to explode in the next 35 years by an additional 2.4 billion, reaching 9.6 billion by 2050, according to the UN report, “World Population Prospects: The 2012 Revision.”[9] Recognizing these major challenges for humanity in the twenty-first century and seeking proactive solutions, even in significant areas such as the environment, energy, health, manufacturing, agriculture, and water usage, will not be an obvious or easy task.

We can see an example of this in the tragic events of the Fukushima meltdown. On March 11, 2011, a 9.0 magnitude earthquake and subsequent tsunami damaged the Fukushima Daiichi nuclear reactors in Japan. Over the course of 24 hours, crews tried desperately to fix the reactors. However, as, one by one, the backup safety measures failed, the fuel rods in the nuclear reactor overheated, releasing dangerous amounts of radiation into the surrounding area. As radiation levels became far too high for humans, emergency teams at the plant were unable to enter key areas to complete the tasks required for recovery. Three hundred thousand people had to be evacuated from their homes, some of whom have yet to return.

The current state of the art in robotics is not capable of surviving the hostile, high- radiation environment of a nuclear power plant meltdown and dealing with the complex tasks required to assist a recovery effort. In the aftermath of Fukushima, the Japanese government did not immediately have access to hardened, radiation-resistant robots. A few robots from American companies — tested on the modern battlefields of Afghanistan and Iraq — including iRobot’s 710 Kobra (formerly Warrior) and 510 PackBot were able to survey the plant.[] The potential for recovery-related tasks that can and should be handled by advanced robotics is far greater than this. However, for many reasons, spanning political, cultural, and systemic, before the Fukushima event, an investment in robotic research was never seriously considered. The meltdown was an unthinkable catastrophe, one that Japanese officials thought could never happen, and as such, it was not even acknowledged as a possible scenario for which planning was needed.

The Fukushima catastrophe inspired the United States Defense Advanced Research Projects Agency (DARPA) to create the Robotics Challenge, the purpose of which is to accelerate technological development for robotics in the area of disaster recovery. Acknowledging the fragility of our human systems and finding resilient solutions to catastrophes — whether it’s the next super storm, earthquake, or nuclear meltdown — is a problem on which designers, engineers, and technologists should focus.

In the DARPA competition mission statement, we can see the framing of the challenge in human terms.

History has repeatedly demonstrated that humans are vulnerable to natural and man-made disasters, and there are often limitations to what we can do to help remedy these situations when they occur. Robots have the potential to be useful assistants in situations in which humans cannot safely operate, but despite the imaginings of science fiction, the actual robots of today are not yet robust enough to function in many disaster zones nor capable enough to perform the most basic tasks required to help mitigate a crisis situation. The goal of the DRC is to generate groundbreaking research and development in hardware and software that will enable future robots, in tandem with human counterparts, to perform the most hazardous activities in disaster zones, thus reducing casualties and saving

lives™

The competition, so far, has been successful in its mission to encourage innovation in advanced robotics. In the competition trials held in December 2013, robots from MIT, Carnegie Mellon, and the Google-owned Japanese firm, Schaft, Inc., competed at a variety of tasks related to disaster recovery, which included driving cars, traversing difficult terrain, climbing ladders, opening doors, moving debris, cutting holes in walls, closing valves, and unreeling hoses.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel