Menu
Home
Log in / Register
 
Home arrow Computer Science arrow Applied Big Data Analytics in Operations Management
Source

FUTURE RESEARCH DIRECTIONS

The analysis presented in this report can be extended in several ways. Prediction

accuracy can be improved in several ways including:

  • • The model presented in this report is based on data from all routes and hence can be used to model degradation in all routes. If enough data becomes available, a separate model for each route can yield a higher accuracy and robustness. Also, if the data is available, the influence of wheels on track degradation can be analysed and modelled.
  • • The model presented in this report only focuses on Curves. A separate model to predict degradation for other track components (e.g. straight, H-crossing, crossover) can help prioritise the maintenance across the entire network.
  • • Similar procedure can be used to analyse the deterioration data and model the rate of deterioration/defection of different assets of tram system (e.g. overheads).

REFERENCES

Ahmad, R., & Kamaruddin, S. (2012). An overview of time-based and condition- based maintenance in industrial application. Computers & Industrial Engineering, 63(1), 135-149. doi:10.1016/j.cie.2012.02.002

Alfelor, R., Carr, G., & Fateh, M. (2001). Track degradation assessment using gage restraint measurements. Transportation Research Record: Journal of the Transportation Research Board, 1742, 68-77. doi:10.3141/1742-09

Andrade, A. R., & Teixeira, P. F. (2011). Uncertainty in rail-track geometry degradation: Lisbon-Oporto line case study. Journal of Transportation Engineering, 137(3), 193-200. doi:10.1061/(ASCE)TE.1943-5436.0000206

Andrade, A. R., & Teixeira, P. F. (2013). Unplanned-maintenance needs related to rail track geometry.Proceedings of the ICE - Transport.

Budai, G., Huisman, D., & Dekker, R. (2005). Scheduling preventive railway maintenance activities. The Journal of the Operational Research Society, 57(9), 1035-1044. doi:10.1057/palgrave.jors.2602085

Caetano, L., & Teixeira, P. F. (2013). Availability approach to optimizing railway track renewal operations. Journal of Transportation Engineering, 139(9), 941-948. doi:10.1061/(ASCE)TE.1943-5436.0000575

El-sibaie, M., & Zhang, Y. J. (2004). Objective track quality indices. Transportation Research Record: Journal of the Transportation Research Board, 1863, 81-87. doi:10.3141/1863-11

Gazder, U. & Ratrout, N. T. (2015). A new logit-artificial neural network ensemble for mode choice modeling: a case study for border transport. Journal of Advanced Transportation. DOI: 10.1002/atr.1306

Guler, H., Jovanovic, S., & Evren, G. (2011). Modelling railway track geometry deterioration.Proceedings of the ICE - Transport.

Hensher, D. A. (2000). Transport economics: A personal view. Journal of Advanced Transportation, 34(1), 65-106. doi:10.1002/atr.5670340105

Jovanovic, S. (2004). Railway track quality assessment and related decision making. IEEE International Conference on Systems, Man and Cybernetics. doi:10.1109/ ICSMC.2004.1400992

Larsson, D. (2004). A study of the track degradation process related to changes in railway traffic. (PhD thesis). Lulea University of Technology.

Liu, R., Xu, P., & Wang, F. (2010). Research on a short-range prediction model for track irregularity over small track lengths. Journal of Transportation Engineering, 136(12), 1085-1091. doi:10.1061/(ASCE)TE.1943-5436.0000192

Mazloumi, E., Moridpour, S., Currie, G., & Rose, G. (2012). Exploring the Value of Traffic Flow Data in Bus Travel Time Prediction. Journal of Transportation Engineering, 138(4), 436-446.

Mazloumi, E., Rose, G., Currie, G., & Moridpour, S. (2011). Prediction Intervals to Account for Uncertainties in Neural Network Predictions: Methodology and Application in Bus Travel Time Prediction. Engineering Applications of Artificial Intelligence, 24(3), 534-542.

Moridpour, S., & Hesami, R. (2015). Degradation and performance specification of Melbourne tram tracks. The 3rd International Conference on Transportation Information and Safety (ICTIS).

Peng, F., & Ouyang, Y. (2012). Track maintenance production team scheduling in railroad networks. Transportation Research Part B: Methodological, 46(10), 1474-1488. doi:10.1016/j.trb.2012.07.004

Peng, F., & Ouyang, Y. (2013). Optimal clustering of railroad track maintenance jobs. Computer-Aided Civil and Infrastructure Engineering, 29(4), 235-247. doi:10.1111/mice.12036

Quiroga, L., & Schnieder, E. (2013). Railway systems. In H. Czichos (Ed.), Handbook of Technical Diagnostics. Springer Berlin Heidelberg. doi:10.1007/978-3- 642-25850-3_26

Sadeghi, J. (2010). Development of railway track geometry indexes based on statistical distribution of geometry data. Journal of Transportation Engineering, 136(8), 693-700. doi:10.1061/(ASCE)0733-947X(2010)136:8(693)

Sadeghi, J., & Askarinejad, H. (2010). Development of improved railway track degradation models. Structure and Infrastructure Engineering, 6(6), 675-688. doi:10.1080/15732470801902436

Shafahi, Y., & Hakhamaneshi, R. (2009). Application of maintenance management model for Iranian railways based on the Markov chain probabilistic dynamic modeling. Scientia Iranica, 16, 87-97.

Tang, S., Boyles, S. D., & Jiang, N. (2015). High-speed rail cost recovery time based on an integer optimization model. Journal of Advanced Transportation, 49(5), 634-647. doi:10.1002/atr.1294

Wu, Z., Flintsch, G., Ferreira, A., & Picado-santos, L. (2012). Framework for multiobjective optimization of physical highway assets investments. Journal of Transportation Engineering, 138(12), 1411-1421. doi:10.1061/(ASCE)TE.1943- 5436.0000458

Yaghini, M., Khoshraftar, M. M., & Seyedabadi, M. (2013). Railway passenger train delay prediction via neural network model. Journal of Advanced Transportation, 47(3), 355-368. doi:10.1002/atr.193

Yarra Trams. (2015). Facts and Figures, Yarra Trams. Retrieved from http://www. yarratrams.com.au/about-us/who-we-are/facts-figures/

Yousefikia, M., Moridpour, S., Setunge, S., & Mazloumi, E. (2014). Modeling degradation of tracks for maintenance planning on a tram line. Journal of Traffic and Logistics Engineering., 2(2), 86-91. doi:10.12720/jtle.2.2.86-91

Zakeri, J. A., & Shahriari, S. (2012). Developing a deterioration probabilistic model for rail wear. International Journal of Traffic and Transportation Engineering, 1, 13-18.

Zhao, J., Chan, A., Stirling, A., & Madelin, K. (2006). Optimizing policies of railway ballast tamping and renewal. Transportation Research Record: Journal of the Transportation Research Board, 1943, 50-56. doi:10.3141/1943-07

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel