Menu
Home
Log in / Register
 
Home arrow Environment arrow Inflammatory Disorders of the Nervous System: Pathogenesis, Immunology, and Clinical Management
Source

References

  • 1. McGeer PL, McGeer EG. History of innate immunity in neurodegenerative disorders. Front Pharmacol. 2011;2 (Dec., Art. #77):1-5.
  • 2. Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4(5):594-600.
  • 3. Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross priming. Nat Med. 2001;7(3):297-303.
  • 4. Tsilioni I, Panagiotidou S, Theoharides TC. Exosomes in neurologic and psychiatric disorders. Clin Ther. 2014;36(6):882-8.
  • 5. Lobb RJ, Becker M, En SW, et al. Optimized exosome isolation protocol for cell culture supernatants and human plasma. J Extracell Vesicles. 2015;17(4):27031.
  • 6. Salzer U, Zhu R, Luten M, et al. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin. Transfusion. 2008;48:451-62.
  • 7. Flaumenhaft R, Dilks JR, Richardson J, et al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood. 2009;113(5):1112-21.
  • 8. Allan D, Thomas P, Limbrick AR. The isolation and characterization of 60 nm vesicles (“nanovesicles”) produced during ionophore A23187-induced budding of human erythrocytes. Biochem J. 1980;188:881-7.
  • 9. Danesh A, Inglis HC, Jackman RP, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 2014;123(5):687-96.
  • 10. Xu X, Greening DW, Rai A, et al. Highly-purified exosomes and shed microvesicles isolated from human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods Inf Med. 2015;87:11-25.
  • 11. Kanada M, Bachmann MH, Hardy JW, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Nat Acad Sci USA. 2015;112(12):E1433-42.
  • 12. Choi DS, Kim DK, Kim YK, et al. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes [Review]. Proteomics. 2013;13(10-11):1554-71.
  • 13. Sadallah S, Eken C, Schifferli JA. Erythrocyte-derived ectosomes have immunosuppressive properties. J Leukoc Biol. 2008;84(5):1316-25.
  • 14. Valapala M, Vishwanatha J. Lipid raft endocytosis and exosomal transport facilitate extracel- lula trafficking of annexin A2. J Biol Chem. 2011;286(35):30911-25.
  • 15. Yamashita T, Takahashi Y, Nishikiwa M, et al. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from circulation. Eur J Pharm Biopharm. 2016;98(Jan):1-8.
  • 16. Wang J, Yao Y, Wu J, et al. Identification and analysis of exosomes secreted from macrophages extracted by different methods. Int J Clin Exp Pathol. 2015;8(6):6135-42.
  • 17. Zarovni N, Corrado A, Gluzzi P, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acid using immunocapture approaches. Methods Inf Med. 2015;87:46-58.
  • 18. VanDerMeijden PE, VanSchilfgaard M, VanOerle R, et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via FXIIa. J Thromb Haemost. 2012;10:1355-62.
  • 19. Rubin O, Delobel J, Prudent M, et al. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation. Transfusion. 2013;53(8):1744-55.
  • 20. Soriano AO, Jy W, Chirinos JA, et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med. 2005;33(11):2540-6.
  • 21. Horstman LL, Minagar A, Jy W, et al. Cell-derived microparticles and exosomes in neuroinflammatory conditions. Int Rev Neurobiol. 2007;79:229-68.
  • 22. Johnson BL, Goetzman HS, Prakash PS, et al. Mechanisms underlying mouse TNF-alpha stimulated neutrophil derived microparticle generation. Biochem Biophyis Res Commun. 2013;437(4):591-6.
  • 23. Koseoglu S, Dilks JR, Peters CG, et al. Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis. Arterioscl Thromb Vasc Biol. 2013;33(3):481-6.
  • 24. O’Connell DJ, Rozenvayn N, Flaumenhaft R. Phosphatidylinositol 4,5-bisphosphate regulates activation-induced platelet microparticle formation. Biochem. 2005;44:6361-70.
  • 25. Fujii T, Sakata A, Nishinura S, et al. TMEM16F is required for phosphatidylserine and microparticle release in activated mouse platelets. Proc Nat Acad Sci USA. 2015;112(41):12800-7.
  • 26. Brooks MB, Catalfamo JL, MacNguyen R, et al. A TMEM16F point mutation causes an absence of canine platelet TMEM16F and inefficient activation and death-induced phospholipid scrambling. J Thromb Haemost. 2015;13:2240-52. PRE-PUB(tba):tba
  • 27. Jy W, Horstman LL, Arce M, et al. Clinical significance of platelet microparticles in autoimmune thrombocytopenias [with Editorial pg 321]. J Lab Clin Med. 1992;119:334-45.
  • 28. Ahn YS, Horstman LL, Jy W, et al. Vascular dementia in patients with immune thrombocytopenic purpura (ITP). Thromb Res. 2002;107:337-44.
  • 29. Sewify EM, Sayed D, Abdel ARF, et al. Increased circulating red cell microparticles (RMP) and platelet microparticles (PMP) in immune thrombocytopenic purpura. Thromb Res. 2013;131(2):e59-63.
  • 30. Lee YJ, Horstman LL, Janania J, et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res. 1993;72:295-304.
  • 31. Lavallee PC, Labreuche J, Faille D, et al. Circulating markers of endothelial dysfunction and platelet activation in patients with severe symptomatic cerebral small vessel disease. Cerebrovasc Dis. 2013;36(2):131-8.
  • 32. Datta A, Chen CP, Sze SK. Discovery of prognostic biomarker candidates of lacunar infarction by quantitative proteomics of microparticles enriched plasma. PloS One. 2014;9(4):e94663.
  • 33. Jy W, Horstman LL, Homolak D, et al. Electrophoretic properties of platelets from normal, thrombotic and ITP patients by doppler electrophoretic light scattering analysis. Platelets. 1995;6:354-8.
  • 34. London F, Walsh PN. The role of electrostatic interaction in the assembly of the factor X activating complex on both activated platelets and negatively-charged phospholipid vesicles. Biochemistry. 1996;35(37):12146-54.
  • 35. VanDijk D, Jansen EWL, Hijman R, et al. Cognitive outcomes after off-pump and on-pump coronary artery bypass graft surgery. JAMA. 2002;287(11):1405-12.
  • 36. Humphries S, Harrison MJ. Cognitive change 5 years after coronary artery bypass surgery. Health Psychol. 2003;22(6):579-86.
  • 37. Minagar A, Jy W, Jimenez JJ, et al. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology. 2001;56(10):1319-24.
  • 38. Jimenez JJ, Jy W, Mauro L, et al. Elevated endothelial microparticle-monocyte complexes induced by multiple sclerosis plasma and the inhibitory effects of interferon-beta 1b on release of endothelial microparticles, formation and transendothelial migration of monocyte- endothelial microparticle complexes. Multiple Sclerosis. 2005;11(3):310-5.
  • 39. Jy W, Jimenez JJ, Minagar A, et al. Endothelial microparticles (EMP) enhance adhesion and transmigration of monocytes: EMP-monocyte conjugates as a marker of disease activity in multiple sclerosis (MS). Blood. 2002;100(11):460a Ab 1783.
  • 40. Jy W, Minagar A, Jimenez JJ, et al. Endothelial microparticles (EMP) bind and activate monocytes: Elevated EMP-monocyte complexes in multiple sclerosis. Frontiers Biosci. 2004;9:3137-44.
  • 41. Sheremata WA, Jy W, Delgado S, et al. Interferon-betala reduces plasma CD31+ endothelial microparticles (CD31+ EMP) in multiple sclerosis. J Neuroinflammation. 2006;3:23-4.
  • 42. Cloutier N, Tan S, Boudreau LH, et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med. 2013;5(2):235-49.
  • 43. Bidot CJ, Horstman LL, Jy W, et al. Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis. JCM Neurol. 2007;7:36.
  • 44. Sheremata WA, Jy W, Horstman LL, et al. Evidence of platelet activation in multiple sclerosis. J Neuroinflammation. 2008;5:27.
  • 45. Sevush S, Jy W, Horstman LL, et al. Platelet activation in Alzheimer’s disease. Arch Neurol. 1998;55(4):530-6.
  • 46. Pareek S, Roy S, Kumari B, et al. MiR-155 induction in microglial cells suppresses Japanese encephalitis virus replication and negatively modulates innate immune response. J Neuroinflammation. 2014;11:97.
  • 47. Hill JM, Zhang Y, Clement C, et al. HSV-1 infection of human brain cells induces miRNA- 146a and Alzheimer-type inflammatory signaling. Neuroreport. 2009;20(16):1500-6.
  • 48. Wen B, Combes V, Bonhoure A, et al. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory response. PloS One. 2014;9(3):e91597.
  • 49. Frohlich D, Kuo WP, Fruhbeis C. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.
  • 50. Pusic AD. Youth and environmental enrichment generate serum exosomes containing miR- 219 that promotes CNS myelination. Glia. 2014;62(2):284-99.
  • 51. Bekkering S, Quintin J, Joosten LA, et al. Oxidized low-density lipoprotein induces longterm proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Atheroscler Thromb Vasc Biol. 2014;34(8):1731-8.
  • 52. Giovannelli I, Martelli F, Repice A, et al. Detection of JCPyV micro RNA in blood and urine samples of multiple sclerosis patients undergoing natalizumab therapy. J Neurovirol. 2015;21:666-70. EPUB PREPRINT
  • 52b. Omotezako T, Onuma TA, Noshida H. DNA interference: DNA-induces gene silencing in the appendicularian Oikop. Proc Biol Sci. 2015;282(1807):20150435.
  • 53. Konadu KA, Chu J, Huang MB, et al. Association of cytokines with exosomes in the plasma of HIV-1-seropositive individuals. J Infect Dis. 2014;211:1712-6. E Pub Pre-Print
  • 54. Mullen L, Hanschman EM, Herzenberg CHL, et al. Cysteine oxidation targets peroxiredox- ins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion. Mol Med. 2015;21:98-108. PrePub(Feb13):TBA
  • 55. MacKenzie A, Wilson HL, Kiss-Toth E, et al. Rapid secretion of interleukin-1B by microvesicle shedding. Immunity. 2001;8:825-35.
  • 56. Lenglet S, Montecucco F, Mach F. Role of matrix metalloproteinases in animal models of acute ischemic stroke. Curr Vasc Pharmacol. 2013;13:161-6. EPub PrePrint
  • 57. Sporer B. UKoedel, Paul R, et al.: Human immunodeficiency virus type-1 Nef protein induces blood-brain barrier disruption in the rat: role of matrix metalloproteinase-9. J Neuroimmunol. 2000;102:125-30.
  • 58. Muraski ME, Roycik MD, Newcomer RG, et al. Matrix metalloproteinase-9/gelatinase B is a putative therapeutic target of chronic obstructive pulmonary disease and multiple sclerosis. Curr Pharm Biotech. 2009;9(1):24-46.
  • 59. Shai O, Ould-Yahoui A, Ferhat L, et al. Differential vesicular distribution and trafficking of MMP-2, MMP-9, and their inhibitors in astrocytes. Glia. 2010;58(3):344-66.
  • 60. Candela ME, Geraci E, Turturrici G, et al. Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor 2 are released into the extracellular space from mouse mesoangioblast stem cells. J Cell Physiol. 2010;224(1):144-51.
  • 61. McColl BW, Rothwell NJ, Allan SM. Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci. 2008;28(38):9451-62.
  • 62. Justice PA, Sun W, Li Y, et al. Membrane vesiculation function and exocytosis of wild type and mutant matrix proteins of vesicular stomatitis virus. J Virol. 1995;69(5):3156-60.
  • 63. Hakulinen J, Sankkila L, Sugiyama N, et al. Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. J Cell Biochem. 2008;105(5):1211-8.
  • 64. Lozito TP, Tuan RS. Endothelial cell microparticles act as centers of matrix metalloproteinase-2 (MMP-2) activity and vascular matrix remodeling. J Cell Physiol. 2012;227(2):534-49.
  • 65. Hanania R, Sun HS, Xu K, et al. Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. J Biol Chem. 2012;287(11): 8468-83.
  • 66. Liubisavlievic S, Stojanovic I, Basic J, et al. The role of matrix metalloproteinase 3 and 9 in the pathogenesis of acute neuroinflammation. Implications for disease modifying therapy. J Mol Neurosci. 2015;56:840-7. EPub PrePrint(Feb22):TBA
  • 67. van Noort JM, Bsibsi M, Nacken P, et al. The link between small heat shock proteins and the immune system. Int J Biochem Cell Biol. 2012;44(10):1670-9.
  • 68. Cid C, Alvaerez-Cermeno JC, Salinas M, et al. Anti-heat shock protein 90beta antibodies decrease pre-oligodendrocyte population in perinatal and adult cell cultures: Implications for remyelination in multiple sclerosis. J Neurochem. 2005;95:349-60.
  • 69. Gangalum RK, Atanasov IC, Zhou ZH, et al. AlphaB-crystallin is found in detergent-resistant membrane microdomains and is secreted via exosomes from human retinal pigment cells. J Biol Chem. 2011;286(5):3261-9.
  • 70. Sevennson K, Christianson HC, Wittrup A, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid-raft mediated endocytosis negatively regulated by cave- olin-1. J Bio Chem. 2013;288(24):17713-24.
  • 71. Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol. 2005;17(9):1239-48.
  • 72. Wadhwa R, Ryu J, Ahn HM, et al. Functional significance of point mutations in stress chaperone mortalin and their relevance to Parkinson disease. J Biol Chem. 2015;290:8447-56. ePub Pre-print
  • 73. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14(3):195-208.
  • 74. Orsini F, DeBlasion D, Zangari R, et al. Versatility of the complement system in neuroinflammation, neurodegeneration, and brain homeostasis. Front Cell Neurosci. 2014;8:380.
  • 75. Bochkov VN. Inflammatory profile of oxidized phospholipids. Thromb Haemost. 2007;97(3):348-54.
  • 76. Fiebich BL, Akter S, Akundi RS. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci. 2014;8:260.
  • 77. Fruhbeis C, Frolich D, Kramer-Albers EM. Emerging roles of exosomes in neuron-glia communication. Front Physiol. 2012;30(3):119.
  • 78. Bodin S, Viala C, Ragab A, et al. A critical role of lipid rafts in the organization of a key Fc-gamma-RIIa-mediated signaling pathway in human platelets. Thromb Haemost. 2003;89:318-30.
  • 79. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Molec Cell Biol. 2000;1:31-9.
  • 80. Foster LJ. deHoog CL, Mann M: Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Nat Acad Sci USA. 2003;100(10):5813-8.
  • 81. Terasaki Y, Liu Y, Hawakawa K, et al. Mechanisms of neurovasculation dysfunction in acute ischemic brain. Curr Med Chem. 2014;21(18):2035-42.
  • 82. Taylor DD, Gercel-Taylor C. Exosome platform for diagnosis and monitoring of traumatic brain injury. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.
  • 83. de Rivero JP, Brand 3rd F, Adamczak S, et al. Exosome-mediated inflammasome signaling after central nervous system injury. J Neurochem. 2015;136:39-48. Pre-pub(Jan27):TBA
  • 84. Sanborn MR, Thom SR, Bohman LE, et al. Temporal dynamics of microparticle elevation following subarachnoid hemorrhage. J Neurosurg. 2012;117(3):579-86.
  • 85. Demirov DG, Freed EO. Retroviral budding. Virus Res. 2004;106(2):87-102.
  • 86. Nabhan JF, Hu R, Oh RS, et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA. 2012;109(11):4146-51.
  • 87. Lyman MG, Curanovic D, Enquist LW. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PloS Pathog. 2008;4(5):e1000065.
  • 88. Deng GM, Tsokos GC. Cholera toxin B accelerates disease progression in lupus-prone mice by promoting lipid raft aggregation. J Immunol. 2008;181(6):4019-26.
  • 89. Cuadras MA, Greenberg HB. Rotavirus infectious particles use lipid rafts during replication for transport to the cell surface in vitro and in vivo. Virology. 2003;313(1):308-21.
  • 90. Lafont F, Tran VNG, Hanada K, et al. Initial steps of Shigella infection depend on the choles- terol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J. 2002;21(17):4449-57.
  • 91. Carter GC, Bernstone L, Sangani D, et al. HIV entry in macrophages is dependent on intact lipid rafts. Virology. 2009;386(1):192-202.
  • 92. Laliberte JP, McGinnes LW, Peeples NE, et al. Integrity of membrane lipid rafts is necessary for the ordered assembly and release of infectious Newcastle disease virus particles. J Virol. 2006;80(21):10652-62.
  • 93. Karim S, Mirza Z, Kamal MA, et al. The role of viruses in neurodegenerative and neurobehavioral diseases. CNS Neurol Disord Drug Targets. 2014;13(7):1213-23.
  • 94. Hong S, Banks WA. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun. 2015;45C:1-12.
  • 95. Corrales-Medina VF, Simkins J, Chirinos JA, et al. Increased levels of platelet microparticles in HIV-infected patients with good response to highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2010;54(2):217-8.
  • 96. Alfahad T, Nath A. Retroviruses and amyotrophic lateral sclerosis. Antiviral Res. 2013;99(2):180-7.
  • 97. Wordinger T, Gatson NN, Balai L, et al. Extracellular vesicles and their convergence with viral pathways. Adv Virol. 2012;2012:767694.
  • 98. Saenz-Cuesia M, Osorio-Quereiata I, Otaequi D. Extracellular vesicles in multiple sclerosis: what are they telling us? [Reviewl]. Front Cell Neurosci. 2014;28(8):100.
  • 99. Verderio C, Muzio M, Turola E, et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol. 2012;72:610-24.
  • 100. Peferoen L, Kipp M, VanDerValk P, et al. Oligodendrocyte-microglia cross-talk in the central nervous system [review]. Immunology. 2014;141(3):302-13.
  • 101. Gatson NN, Williams JL, Powell ND, et al. Induction of pregnancy during established EAE halts progression of CNS autoimmune injury via pregnancy-specific serum factors. J Neuroimmunol. 2011;230(1-2):105-13.
  • 102. Williams JL, Gatson NN, Smith KM, et al. Serum exosomes in pregnancy-associated immune modulation and neuroprotection during CNS autoimmunity. Clin Immunol. 2013;149(2):236-43.
  • 103. Kumar R, Kretzschmar B, Herold S, et al. Beneficial effect of chronic Staphylococcus aureus infection in a model of multiple sclerosis is mediated through secretion of extracellular adherence protein. J Neuroinflammation. 2015;12:22. PrePub PrePrint(Feb3):TBA
  • 104. Crookston KP, Sibbitt WL, Chang WL, et al. Circulating microparticles in neuropsychiatric systemic lupus erythematosus. Int Rheum Dis. 2013;16(1):72-80.
  • 105. Grad LI, Fernando SM, Cashman NR. From molecule to molecule and cell to cell: Prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol Dis. 2015;77:257-65. Epub PrePrint
  • 106. Singh J, Udgaonkar JB. Molecular mechanism of the misfolding and oligomerization of the prior protein: Current understanding and its implications. Biochemistry. 2015;54(29):4431-42.
  • 107. Jaunmuktane Z, Meade S, Ellis M, et al. Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature. 2015;525(7568):247-50.
  • 108. Lupton CJ, Steer DL, Wintrode PL, et al. Enhanced molecular mobility of ordinarily structured regions drives polyglutamine disease. J Biol Chem. 2015;290(40):24190-200.
  • 109. Scherzinger E, Lurz R, Turmaine M, et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 1997;90(3):549-58.
  • 110. Taylor DR, Hooper NM. Role of lipid rafts in the processing of the pathogenic prion and Alzheimer’s amyloid-beta proteins. Semin Cell Dev Biol. 2007;18(5):638-48.
  • 111. Taylor DR, Hooper NM. The prion proteins and lipid rafts. Mol Membr Biol. 2006;23(1):89-99.
  • 112. Erlich P, Dumestre-Perard C, Ling WL, et al. Complement protein C1q forms a complex with cytotoxic prion protein oligomers. J Biol Chem. 2010;285(25):19267-76.
  • 113. Simak J, Holada K, D’Agnillo F, et al. Cellular prion protein is expressed on endothelial cells and is released during apoptosis on membrane microparticles found in human plasma. Transfusion. 2002;42:334-42.
  • 114. Chen M, Inestrosa NC, Ross GS, et al. Platelets are the principal source of amyloid beta peptide in human blood. Biochem Biophyis Res Commun. 1995;213(1):96-103.
  • 115. Pienimaeki-Roemer A, Kuhlmann K, Bottcher A, et al. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets. Transfusion. 2015;55(3):507-21.
  • 116. Bellingham SA, Guo BB, Coleman BM, et al. Exosomes: vehicles for the transport of toxic proteins associated with neurodegenerative disease? Front Physiol. 2012;3:124. 3 EPUB PREPRINT
  • 117. Munch C, O’Brien J, Bertolotti A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA. 2011;108(9):3548-ILLEG.
  • 118. Liu KX, Edwards B, Lee S, et al. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain. 2015;138:1167-81. PrePub PrePrint
  • 119. Lee JY, Quaguchi Y, Li M, et al. Uncoupling of protein aggregation and neurodegeneration in a mouse amyotrophic lateral sclerosis model. Neurodegen Dis. 2015;15:339-49. TBA(Pre-Print)
  • 120. Gallegos S, Pacheco C, Peters C, et al. Features of alpha-synuclein that could esxplain progression and irreversibility of Parkinson’s disease. Front Neurosci. 2015;9:59.
  • 121. Dettmer U, Selkoe D, Bartels T. New insights into cellular alpha-synuclein homeostasis in health and disease. Curr Opin Neurobiol. 2015;15(36):15-22.
  • 122. Shi M, Liu C, Cook TJ, et al. Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014;128(5):639-50.
  • 123. Grey M, Dunning CJ, Gaspar R, et al. Acceleration of alpha-synuclein aggregation by exosomes. J Biol Checm. 2015;290(5):2969-82.
  • 124. Gui YX, Liu H, Zhang LS, et al. Altered microRNA in cerebrospinal fluid exosomes in Parkinson disease and Alzheimer disease. Oncotarget. 2015;6:37043-53. TBA(Pre-Pub):tba
  • 125. Cooper JM, Wiklander PB, Nordin JZ, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord. 2014;29(12):1476-85.
  • 126. Treps L, Edmond S, Harford-Wright E, et al. Extra-cellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene. 2015;35:2615-23. PrePrint(in press):tba
  • 127. Raymond AD, Diaz P, Chevelon S, et al. Microglia-derived HIV Nef+ exosome impairment of the blood-brain barrier is treatable by nanomedicine-based delivery of Nef peptides. J Neurovirol. 2015;22:129-39. PrePub(TBA):tba
  • 128. Hay JR, Johnson VE, Young AM, et al. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol. 2015;74(12):1147-57.
  • 129. TianY, Salsbery B, Wang M, et al. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury [editorial pg 2015-6]. Blood. 2014;125(13):2151-9.
  • 130. Lockman PR, Mumper JMKJ, Allen DD. Nanoparticles surface charges alter blood-brain barrier integrity and permeability. J Drug Targeting. 2004;12(9-10):635-41.
  • 131. Joachim E, Il-Doo K, Yinchuan J, et al. Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model. Drug Delivery and Translational Res. 2014;4(5):395-9.
  • 132. Cutler JI, Auyeung EA, Mirkin CA. Spherical nucleic acids [gold core]. J Am Chem Soc. 2012;134:1376-91.
  • 133. Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18-30. Epub(InPrewss):tba
  • 134. Sampey GC, Meyering SS, Asad-Zadeh M, et al. Exosomes and their role in CNS viral infections. J Neurovirol. 2014;20(3):199-208.
  • 135. Alvarez-Erviti L, Seow Y, HaiFang Y, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [see online supplement for details]. Nat Biotech. 2011;29(4):341-5.
  • 136. Chataway J, Schuerer N, Alsanousi A, et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo- controlled, phase 2 trial [See issue Sept. 13 for letters]. Lancet. 2014;383(9936):2213-21.
  • 137. Malkki H. Could simvastatin slow down secondary progressive MS? [Comment on Chataway et al., in Lancet, June 28, 2014]. Nat Rev Neurol. 2014;10:241.
  • 138. Ulivieri C, Baldari CT. Statins: from cholesterol-lowering drugs to novel immunomodulators for the treatment of Th17-mediated autoimmune diseases. Pharmacol Res. 2014;88:41-52.
  • 139. Krisanova N, Sivko R, Kasatkina L, et al. Neuroprotection by lowering cholesterol: a decrease in the membrane cholesterol content reduces transporter-mediated glutamate release from brain nerve terminals. Biochim Biophys Acta. 2012;1822(10):1553-61.
  • 140. Lei O, Peng WN, You H, et al. Statins in nervous system-associated diseases: angels or devils? Pharmazie. 2014;69(6):448-54.
  • 141. Tramontano AF, O’Leary J, Black AD, et al. Statin decreases endothelial microparticle release from human coronary artery endothelial cells: implication for the Rho-kinase pathway. Biochem Biophys Res Com. 2004;320:34-8.
  • 142. Suades R, Padro T, Alonso R, et al. Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets, and inflammatory cells. Thromb Haemost. 2013;119(2):366-77.
  • 143. Relja B, Lehnert M, Seyboth K, et al. Simvastatin reduces mortality and hepatic injury after hemorrhage/resuscitation in rats. Shock. 2009;34:46-54. Epub preprint
  • 144. Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol. 2014;49(1):590-600.
  • 145. Robinzon S, Dafa-Berger A, Dyer MD, et al. Impaired cholesterol biosynthesis in a neuronal cell line persistently infected with measles virus. J Virol. 2009;83(11):5495-504.
  • 146. Xin H, Li Y, Cui Y, et al. Systemic administration of exosomes released from mesenchymal stromal stem cells promotes functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711-ILLEG.
  • 147. Xin H, Li Y, Liu Z, et al. MiR-133 promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal stem cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737-46.
  • 148. Cantaluppi V, Medica D, Mannari C, et al. Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transplant. 2015;30(3):410-22.
  • 149. Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122:856-67. EpubPrePrint(TBA):TBA
  • 150. Schock SC, Edrissi H, Burger D, et al. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells. Biochem Biophyis Res Commun. 2014;450:912-7. PrePub PrePrint(TBA)
  • 151. Hayon Y, Shai E, Varon D, et al. The role of platelets and their microparticles in rehabilitation of ischemic brain tissue. CNS Neurol Disord Drug Targets. 2012;11(7):921-5.
  • 152. Camussi G, Deregibus MC, Bruno S, et al. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 2011;1(1):98-110.
  • 153. Sims PJ, Wiedmer T. Repolarization of the membrane potential of blood platelets after complement damage: Evidence for a Ca2+—dependent exocytotic elimination of C5b-9 pores. Blood. 1986;68(2):556-61.
  • 154. Horstman LL, Jy W, Schultz DR, et al. Complement mediated fragmentation and lysis of opsonized platelets: gender differences in sensitivity. J Lab Clin Med. 1994;123:515-25.
  • 155. Pilzer D, Gasser O, Moskcovitch O, et al. Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Sprig Semin Immunopath. 2005;27(3):375-87.
  • 156. Fluiter K, Opperhuizen AL, Morgan BP, et al. Inhibition of the membrane attack complex of the complement system reduces secondary neuronaxonal loss and promotes neurologica recovery after traumatic brain injury in mice. J Immunol. 2014;192(5):2339-48.
  • 157. Sahu A, Morikis D, Labris JD. Compstatin, a peptide inhibitor of complement, exhibits species-specific binding to complement component C3. Mol Immunol. 2008;39(10):557-66.
  • 158. Risitano A, Ricklin D, Huang Y, et al. Peptide inhibitors of C3a activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria [with Commentary, pg 1975]. Blood. 2014;123(13):2094-101.
  • 159. Davis AE, Mejia P, Lu F. Biological activities of C1 inhibitor. Mol Immunol. 2008;45(16):4057-63.
  • 160. Hill A, Hillman P, Richards SJ, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. New Engl J Med. 2006;355:1233-43.
  • 161. Samadder NJ, Casaubon L, Silver F, et al. Neurological complications of paroxysmal nocturnal hemoglobinuria. Can J Neurol Sci. 2007;34(3):368-71.
  • 162. Elward K, Griffiths M, Mizumo M, et al. CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J Biol Chem. 2005;280(43):36342-54.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel