Log in / Register
Home arrow Environment arrow Inflammatory Disorders of the Nervous System: Pathogenesis, Immunology, and Clinical Management


  • 1. Stoquart-Elsankari S et al. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 2009;29(6):1208-15.
  • 2. Hatt A et al. MR elastography can be used to measure brain stiffness changes as a result of altered cranial venous drainage during jugular compression. AJNR Am J Neuroradiol. 2015;36(10):1971-7.
  • 3. Beggs CB et al. Aqueductal cerebrospinal fluid pulsatility in healthy individuals is affected by impaired cerebral venous outflow. J Magn Reson Imaging. 2014;40(5):1215-22.
  • 4. Zamboni P et al. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009;80(4):392-9.
  • 5. Zamboni P et al. Assessment of cerebral venous return by a novel plethysmography method. J Vasc Surg. 2012;56(3):677-85. el
  • 6. Zivadinov R et al. Prevalence, sensitivity, and specificity of chronic cerebrospinal venous insufficiency in MS. Neurology. 2011;77(2):138-44.
  • 7. Liu M, et al. Patterns of chronic venous insufficiency in the dural sinuses and extracranial draining veins and their relationship with white matter hyperintensities for patients with Parkinson’s disease. J Vasc Surg. 2015;61(6):1511-20.e1
  • 8. Filipo R et al. Chronic cerebrospinal venous insufficiency in patients with Meniere’s disease. Eur Arch Otorhinolaryngol. 2015;272(1):77-82.
  • 9. Di Berardino F et al. Chronic cerebrospinal venous insufficiency in Meniere disease. Phlebology. 2015;30(4):274-9.
  • 10. Chung CP et al. Jugular venous reflux and white matter abnormalities in Alzheimer’s disease: a pilot study. J Alzheimers Dis. 2014;39(3):601-9.
  • 11. Beggs C et al. Jugular venous reflux and brain parenchyma volumes in elderly patients with mild cognitive impairment and Alzheimer’s disease. BMC Neurol. 2013;13:157.
  • 12. Dawson JW. The histology of disseminated sclerosis. Trans Roy Soc Edinb. 1916;50:517.
  • 13. Putnam TJ. Evidences of vascular occlusion in multiple sclerosis and encephalomyelitis. Arch Neurol Psychiatry. 1937;6:1298-321.
  • 14. Putnam TJ, Adler A. Vascular architecture of the lesions of multiple sclerosis. Arch Neurol Psychiatry. 1937;38:1-5.
  • 15. Adams CW. Perivascular iron deposition and other vascular damage in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1988;51(2):260-5.
  • 16. Schelling F. Damaging venous reflux into the skull or spine: relevance to multiple sclerosis. Med Hypotheses. 1986;21(2):141-8.
  • 17. Talbert DG. Raised venous pressure as a factor in multiple sclerosis. Med Hypotheses. 2008;70(6):1112-7.
  • 18. Adams CW et al. Periventricular lesions in multiple sclerosis: their perivenous origin and relationship to granular ependymitis. Neuropathol Appl Neurobiol. 1987;13(2):141-52.
  • 19. Fog T. On the vessel-plaque relations in the brain in multiple sclerosis. Acta Neurol Scand Suppl. 1963;39(4):SUPPL4:258-62.
  • 20. Tan IL et al. MR venography of multiple sclerosis. AJNR Am J Neuroradiol. 2000;21(6):1039-42.
  • 21. Kidd D et al. Cortical lesions in multiple sclerosis. Brain. 1999;122(Pt 1):17-26.
  • 22. Kermode AG et al. Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain. 1990;113(Pt 5):1477-89.
  • 23. Tallantyre EC et al. Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology. 2011;76(6):534-9.
  • 24. Duvernoy HM, Delon S, Vannson JL. Cortical blood vessels of the human brain. Brain Res Bull. 1981;7(5):519-79.
  • 25. Gilmore CP et al. Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry. 2009;80(2):182-7.
  • 26. Young NP et al. Perivenous demyelination: association with clinically defined acute disseminated encephalomyelitis and comparison with pathologically confirmed multiple sclerosis. Brain. 2010;133(Pt 2):333-48.
  • 27. Pitt D et al. Imaging cortical lesions in multiple sclerosis with ultra-high-field magnetic resonance imaging. Arch Neurol. 2010;67(7):812-8.
  • 28. Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):220-30.
  • 29. Simionescu M, Simionescu N, Palade GE. Segmental differentiations of cell junctions in the vascular endothelium. Arteries and veins. J Cell Biol. 1976;68(3):705-23.
  • 30. Simionescu M, Simionescu N, Palade GE. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol. 1975;67(3):863-85.
  • 31. Nagy Z, Peters H, Huttner I. Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab Invest. 1984;50(3):313-22.
  • 32. McCandless EE et al. Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am J Pathol. 2008;172(3):799-808.
  • 33. McCandless EE et al. CXCL12 Limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol. 2006;177(11):8053-64.
  • 34. Goldsmith HL, Spain S. Margination of leukocytes in blood flow through small tubes. Microvasc Res. 1984;27(2):204-22.
  • 35. Ley K. Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovasc Res. 1996;32(4):733-42.
  • 36. Chung CP, Hu HH. Pathogenesis of leukoaraiosis: role of jugular venous reflux. Med Hypotheses. 2010;75(1):85-90.
  • 37. Chung CP et al. Jugular venous hemodynamic changes with aging. Ultrasound Med Biol. 2010;36(11):1776-82.
  • 38. Chung CP et al. More severe white matter changes in the elderly with jugular venous reflux. Ann Neurol. 2011;69(3):553-9.
  • 39. Moody DM et al. Periventricular venous collagenosis: association with leukoaraiosis. Radiology. 1995;194(2):469-76.
  • 40. Brown WR et al. Microvascular changes in the white matter in dementia. J Neurol Sci. 2009;283(1-2):28-31.
  • 41. Moody DM et al. Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer’s disease. Ann N Y Acad Sci. 1997;826:103-16.
  • 42. Brown WR, Thore CR. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol. 2011;37(1):56-74.
  • 43. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke. 1997;28(3):652-9.
  • 44. Inzitari D et al. Histopathological correlates of leuko-araiosis in patients with ischemic stroke. Eur Neurol. 1989;29(Suppl 2):23-6.
  • 45. Inzitari D et al. Leukoaraiosis, intracerebral hemorrhage, and arterial hypertension. Stroke. 1990;21(10):1419-23.
  • 46. Wiszniewska M et al. What is the significance of leukoaraiosis in patients with acute ischemic stroke? Arch Neurol. 2000;57(7):967-73.
  • 47. Inzitari D et al. Vascular risk factors and leuko-araiosis. Arch Neurol. 1987;44(1):42-7.
  • 48. Furuta A et al. Medullary arteries in aging and dementia. Stroke. 1991;22(4):442-6.
  • 49. Fazekas F et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43(9):1683-9.
  • 50. van Swieten JC et al. Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain. 1991;114(Pt 2):761-74.
  • 51. Thore CR et al. Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exp Neurol. 2007;66(5):337-45.
  • 52. Brown WR et al. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J Neurol Sci. 2002;203-204:159-63.
  • 53. Moody DM, Santamore WP, Bell MA. Does tortuosity in cerebral arterioles impair down- autoregulation in hypertensives and elderly normotensives? A hypothesis and computer model. Clin Neurosurg. 1991;37:372-87.
  • 54. Kawamura J et al. Leukoaraiosis correlates with cerebral hypoperfusion in vascular dementia. Stroke. 1991;22(5):609-14.
  • 55. O’Sullivan M et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology. 2002;59(3):321-6.
  • 56. Markus HS et al. Reduced cerebral blood flow in white matter in ischaemic leukoaraiosis demonstrated using quantitative exogenous contrast based perfusion MRI. J Neurol Neurosurg Psychiatry. 2000;69(1):48-53.
  • 57. Law M et al. Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology. 2004;231(3):645-52.
  • 58. Ge Y et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol. 2005;26(6):1539-47.
  • 59. Varga AW et al. White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis. J Neurol Sci. 2009;282(1-2):28-33.
  • 60. Adhya S et al. Pattern of hemodynamic impairment in multiple sclerosis: dynamic susceptibility contrast perfusion MR imaging at 3.0 T. Neuroimage. 2006;33(4):1029-35.
  • 61. Wakefield AJ et al. Immunohistochemical study of vascular injury in acute multiple sclerosis. J Clin Pathol. 1994;47(2):129-33.
  • 62. Aboul-Enein F, Lassmann H. Mitochondrial damage and histotoxic hypoxia: a pathway of tissue injury in inflammatory brain disease? Acta Neuropathol. 2005;109(1):49-55.
  • 63. Ge Y, Zohrabian VM, Grossman RI. Seven-Tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol. 2008;65(6):812-6.
  • 64. Werring DJ et al. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain. 2000;123(Pt 8):1667-76.
  • 65. Wuerfel J et al. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain. 2004;127(Pt 1):111-9.
  • 66. Lochhead JJ et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab. 2010;30(9):1625-36.
  • 67. Witt KA et al. Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol. 2003;285(6):H2820-31.
  • 68. Wittek A et al. Subject-specific non-linear biomechanical model of needle insertion into brain. Comput Methods Biomech Biomed Engin. 2008;11(2):135-46.
  • 69. Egnor M, Rosiello A, Zheng L. A model of intracranial pulsations. Pediatr Neurosurg. 2001;35(6):284-98.
  • 70. Bateman GA. Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology. 2002;44(9):740-8.
  • 71. Wagshul ME, Eide PK, Madsen JR. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS. 2011;8(1):5.
  • 72. Egnor M et al. A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg. 2002;36(6):281-303.
  • 73. Beggs CB. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Med. 2013;11:142.
  • 74. Beggs CB. Cerebral venous outflow and cerebrospinal fluid dynamics. Veins and Lymphatics. 2014;3:1867.
  • 75. Bateman GA. Vascular compliance in normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2000;21(9):1574-85.
  • 76. Bateman GA. Vascular hydraulics associated with idiopathic and secondary intracranial hypertension. AJNR Am J Neuroradiol. 2002;23(7):1180-6.
  • 77. Bilston LE. In: Miller K, editor. Brain tissue mechanical properties, in Biomechanics of the brain. New York: Springer; 2011. p. 69-89.
  • 78. Miller K, Chinzei K. Constitutive modelling of brain tissue: experiment and theory. J Biomech. 1997;30(11-12):1115-21.
  • 79. Beggs CB et al. Blood storage within the intracranial space and its impact on cerebrospinal fluid dynamics. Veins and Lymphatics. 2015;4(S1):11-2.
  • 80. Beggs CB et al. Factors influencing aqueductal cerebrospinal fluid motion in healthy individuals. Veins and Lymphatics. 2015;4(S1):5-6.
  • 81. Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993;386:1-23.
  • 82. Nakagawa Y, Tsuru M, Yada K. Site and mechanism for compression of the venous system during experimental intracranial hypertension. J Neurosurg. 1974;41(4):427-34.
  • 83. Kitano M, Oldendorf WH, Cassen B. The elasticity of the cranial blood pool. J Nucl Med. 1964;5:613-25.
  • 84. Hulme A, Cooper R. Intracranial Pressure III. In: The effect of head position and jugular vein compression on ICP. A clinical study. Berlin: Springer; 1976. p. 259-63.
  • 85. Iwabuchi T et al. Dural sinus pressure: various aspects in human brain surgery in children and adults. Am J Physiol. 1986;250(3 Pt 2):H389-96.
  • 86. Mavrocordatos P, Bissonnette B, Ravussin P. Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol. 2000;12(1):10-4.
  • 87. Frydrychowski AF, Winklewski PJ, Guminski W. Influence of acute jugular vein compression on the cerebral blood flow velocity, pial artery pulsation and width of subarachnoid space in humans. PLoS One. 2012;7(10):e48245.
  • 88. Rashid S et al. Neocortical capillary flow pulsatility is not elevated in experimental communicating hydrocephalus. J Cereb Blood Flow Metab. 2012;32(2):318-29.
  • 89. Bateman GA. Pulse wave encephalopathy: a spectrum hypothesis incorporating Alzheimer’s disease, vascular dementia and normal pressure hydrocephalus. Med Hypotheses. 2004;62(2):182-7.
  • 90. Tarumi T et al. Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab. 2014;34(6):971-8.
  • 91. Mitchell GF et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age Gene/Environment Susceptibility-Reykjavik study. Brain. 2011;134(Pt 11):3398-407.
  • 92. Jolly TA et al. Early detection of microstructural white matter changes associated with arterial pulsatility. Front Hum Neurosci. 2013;7:782.
  • 93. Wahlin A et al. Intracranial pulsatility is associated with regional brain volume in elderly individuals. Neurobiol Aging. 2014;35(2):365-72.
  • 94. Drayer BP. Imaging of the aging brain Part I. Normal findings. Radiology. 1988;166(3):785-96.
  • 95. Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003;107(22):2864-9.
  • 96. Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension. Hypertension. 1989;13(6 Pt 2):968-72.
  • 97. Magnano C et al. Cine cerebrospinal fluid imaging in multiple sclerosis. J Magn Reson Imaging. 2012;36(4):825-34.
  • 98. Gorucu Y et al. Cerebrospinal fluid flow dynamics in patients with multiple sclerosis: a phase contrast magnetic resonance study. Funct Neurol. 2011;26(4):215-22.
  • 99. Zamboni P et al. The severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis is related to altered cerebrospinal fluid dynamics. Funct Neurol. 2009;24(3):133-8.
  • 100. Kim DS et al. Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase- contrast cine MR image in hydrocephalus. Childs Nerv Syst. 1999;15(9):461-7.
  • 101. El Sankari S et al. Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer’s disease: a differential diagnosis from idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2011;8(1):12.
  • 102. Luetmer PH et al. Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery. 2002;50(3):534-43. discussion 543-4
  • 103. Schroth G, Klose U. Cerebrospinal fluid flow. III. Pathological cerebrospinal fluid pulsations. Neuroradiology. 1992;35(1):16-24.
  • 104. Gideon P et al. Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology. 1994;36(3):210-5.
  • 105. Bradley Jr WG et al. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996;198(2):523-9.
  • 106. Beggs CB et al. Dirty-appearing white matter in the brain is associated with altered cerebrospinal fluid pulsatility and hypertension in individuals without neurologic disease. J Neuroimaging. 2016;26(1):136-43.
  • 107. Tullberg M et al. White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelin- ation. Acta Neurol Scand. 2002;105(6):417-26.
  • 108. Czosnyka Z et al. Pulse amplitude of intracranial pressure waveform in hydrocephalus. Acta Neurochir Suppl. 2008;102:137-40.
  • 109. Thompson EJ, Zeman A. Fluids of the brain and the pathogenesis of MS. Neurochem Res. 1992;17(9):901-5.
  • 110. Liu M et al. Patterns of chronic venous insufficiency in the dural sinuses and extracranial draining veins and their relationship with white matter hyperintensities for patients with Parkinson’s disease. J Vasc Surg. 2015;61(6):1511-20. e1
  • 111. Bradley WG. Normal pressure hydrocephalus: new concepts on etiology and diagnosis. AJNR Am J Neuroradiol. 2000;21(9):1586-90.
  • 112. Tullberg M et al. CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J Neurol Neurosurg Psychiatry. 2000;69(1):74-81.
  • 113. Algin O et al. MR cisternography: is it useful in the diagnosis of normal-pressure hydrocephalus and the selection of "good shunt responders"? Diagn Interv Radiol. 2011;17(2):105-11.
  • 114. Tator CH et al. A radioisotopic test for communicating hydrocephalus. J Neurosurg. 1968;28(4):327-40.
  • 115. Tullberg M et al. Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. AJNR Am J Neuroradiol. 2001;22(9):1665-73.
  • 116. Bloomfield GL et al. A proposed relationship between increased intra-abdominal, intrathoracic, and intracranial pressure. Crit Care Med. 1997;25(3):496-503.
  • 117. Shen F et al. Modified Bilston nonlinear viscoelastic model for finite element head injury studies. J Biomech Eng. 2006;128(5):797-801.
  • 118. Deo-Narine V et al. Direct in vivo observation of transventricular absorption in the hydrocephalic dog using magnetic resonance imaging. Invest Radiol. 1994;29(3):287-93.
  • 119. Tullberg M et al. White matter diffusion is higher in Binswanger disease than in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2009;120(4):226-34.
  • 120. Momjian S et al. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004;127(Pt 5):965-72.
  • 121. Owler BK et al. Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline values. J Cereb Blood Flow Metab. 2004;24(1):17-23.
  • 122. Christiansen P et al. Increased water self-diffusion in chronic plaques and in apparently normal white matter in patients with multiple sclerosis. Acta Neurol Scand. 1993;87(3):195-9.
  • 123. Graff-Radford NR et al. Regional cerebral blood flow in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 1987;50(12):1589-96.
  • 124. Ogoh S et al. Blood flow distribution during heat stress: cerebral and systemic blood flow. J Cereb Blood Flow Metab. 2013;33(12):1915-20.
  • 125. Zamboni P et al. Venous collateral circulation of the extracranial cerebrospinal outflow routes. Curr Neurovasc Res. 2009;6(3):204-12.
  • 126. Simka M et al. Extracranial Doppler sonographic criteria of chronic cerebrospinal venous insufficiency in the patients with multiple sclerosis. Int Angiol. 2010;29(2):109-14.
  • 127. Zaniewski M et al. Neck duplex Doppler ultrasound evaluation for assessing chronic cerebrospinal venous insufficiency in multiple sclerosis patients. Phlebology. 2013;28(1):24-31.
  • 128. Haacke EM et al. Patients with multiple sclerosis with structural venous abnormalities on MR imaging exhibit an abnormal flow distribution of the internal jugular veins. J Vasc Interv Radiol. 2012;23(1):60-8. e1-3.
  • 129. Yamout B et al. Extracranial venous stenosis is an unlikely cause of multiple sclerosis. Mult Scler. 2010;16(11):1341-8.
  • 130. Doepp F et al. No cerebrocervical venous congestion in patients with multiple sclerosis. Ann Neurol. 2010;68(2):173-83.
  • 131. Krogias C, et al. Brain Hyperechogenicities are not Associated with Venous Insufficiency in Multiple Sclerosis: a Pilot Neurosonology Study. J Neuroimaging. 2016;26(1):150-5.
  • 132. Baracchini C et al. Progressive multiple sclerosis is not associated with chronic cerebrospinal venous insufficiency. Neurology. 2011;77(9):844-50.
  • 133. Mayer CA et al. The perfect crime? CCSVI not leaving a trace in MS. J Neurol Neurosurg Psychiatry. 2011;82(4):436-40.
  • 134. Traboulsee AL et al. Prevalence of extracranial venous narrowing on catheter venography in people with multiple sclerosis, their siblings, and unrelated healthy controls: a blinded, case- control study. Lancet. 2014;383(9912):138-45.
  • 135. Zivadinov R, Weinstock-Guttman B. Funding CCSVI research is/was a waste of valuable time, money and intellectual energy: no. Mult Scler. 2013;19(7):858-60.
  • 136. Beggs C, Shepherd S, Zamboni P. Cerebral venous outflow resistance and interpretation of cervical plethysmography data with respect to the diagnosis of chronic cerebrospinal venous insufficiency. Phlebology. 2014;29(3):191-9.
  • 137. Bateman GA. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics? AJNR Am J Neuroradiol. 2008;29(1):198-203.
Found a mistake? Please highlight the word and press Shift + Enter  
Business & Finance
Computer Science
Language & Literature
Political science