Menu
Home
Log in / Register
 
Home arrow Health arrow Analysis of Protein Post-Translational Modifications by Mass Spectrometry
Source

References

  • 1 Varki A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 1993;3:97-130.
  • 2 Dwek RA. Glycobiology: Towards understanding the function of sugars. Chem Rev 1996;96:683-720.
  • 3 Alley WR Jr, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 2013;113:2668-2732.
  • 4 Alley WR Jr, Novotny MV. Structural glycomic analyses at high sensitivity:

A decade of progress. Annu Rev Anal Chem 2013;6:237-265.

  • 5 An HJ, Lebrilla CB. Structure elucidation of native N- and O-linked glycans by tandem mass spectrometry (Tutorial). Mass Spectrom Rev 2011;30:560-578.
  • 6 Budnik BA, Lee RS, Steen JAJ. Global methods for protein glycosylation analysis by mass spectrometry. Biochim Biophys Acta 2006;1764:1870-1880.
  • 7 Cortes DF, Kabulski JL, Lazar AC, Lazar IM. Recent advances in the MS analysis of glycoproteins: Capillary and microfluidic workflows. Electrophoresis 2011;32:14-29.
  • 8 Dalpathado DS, Desaire H. Glycopeptide analysis by mass spectrometry. Analyst 2008;133:731-738.
  • 9 Desaire H. Glycopeptide analysis, recent developments and applications.

Mol Cell Proteomics 2013;12:893-901.

10 Han L, Costello CE. Mass spectrometry of glycans. Biochemistry 2013;78:710-720.

  • 11 Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates and glycoconjugates. Int JMass Spectrom 2003;226:1-35.
  • 12 Harvey DJ. Proteomic analysis of glycosylation: structural determination of N- and O-linked glycans by mass spectrometry. Expert Rev Proteomics 2005;2:87-101.
  • 13 Harvey DJ. Structural determination of N-linked glycans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics 2005;5:1774-1786.
  • 14 Haslam SM, North SJ, Dell A. Mass spectrometric analysis of N- and O-glycosylation of tissues and cells. Curr Opin Struct Biol 2006;16:584-591.
  • 15 Haslam SM, Khoo KH, Dell A. Sequencing of oligosaccharides and glycoproteins. In: Wong C-H, editor. Carbohydrate-Based Drug Discovery. Wiley VCH; 2006. p 461-482.
  • 16 Morelle W, Faid V, Chirat F, Michalski JC. Analysis of N- and O-linked glycans from glycoproteins using MALDI-TOF mass spectrometry. Methods Mol Biol 2009;534:5-21.
  • 17 Novotny MV, Alley WR Jr, Mann BF. Analytical glycobiology at high sensitivity: current approaches and directions. Glycoconj J 2013;30:89-117.
  • 18 Novotny MV, Alley WR Jr. Recent trends in analytical and structural glycobiology. Curr Opin Chem Biol 2013;17:832-840.
  • 19 U^akturk E. Analysis of glycoforms on the glycosylation site and the glycans in monoclonal antibody biopharmaceuticals. J Sep Sci 2012;35:341-350.
  • 20 Zaia J. Mass spectrometry of oligosaccharides. Mass Spectrom Rev 2004;23:161-227.
  • 21 Zaia J. Mass spectrometry and glycomics. OMICS J Integrat Biol 2010;14:401-418.
  • 22 Zauner G, Kozak RP, Gardner RA, Fernandes DL, Deelder AM, Wuhrer M. Protein O-glycosylation analysis. Biol Chem 2012;393:687-708.
  • 23 Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 105 x 1012 structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthetic systems. Glycobiology 1994;4:759-767.
  • 24 Kennedy JF. Carbohydrate Chemistry. Oxford: Clarendon Press; 1988.
  • 25 Hounsell EF, Davies MJ, Renouf DV. O-Linked protein glycosylation structure and function. Glycoconj J 1996;13:19-26.
  • 26 Satomi Y, Shimonishi Y, Takao T. N-glycosylation at Asn in the Asn-Xaa-Cys motif of human transferrin. FEBSLett 2004;576:51-56.
  • 27 Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor Laboratory Press; 2008.
  • 28 Cooper CA, Wilkins MR, Williams KL, Packer NH. BOLD - A biological O-linked glycan database. Electrophoresis 1999;20:3589-3598.
  • 29 Harvey DJ, Merry AH, Royle L, Campbell MP, Rudd PM. Symbol nomenclature for representing glycan structures: Extension to cover different carbohydrate types. Proteomics 2011;11:4291-4295.
  • 30 Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 1985;54:631-664.
  • 31 Chakel JA, Pungor E Jr, Hancock WS, Swedberg SA. Analysis of recombinant DNA-derived glycoproteins via high-performance capillary electrophoresis coupled with off-line matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Chromatogr B 1997;689:215-220.
  • 32 Apffel A, Chakel JA, Hancock WS, Souders C, M'Timkulu T, Pungor E Jr. Application of high-performance liquid chromatography-electrospray ionization mass spectrometry and matrix-assisted laser desorption ionization time-of-flight mass spectrometry in combination with selective enzymatic modifications in the characterization of glycosylation patterns in single-chain plasminogen activator. J Chromatogr A 1996;732:27-42.
  • 33 Fanayan S, Hincapie M, Hancock WS. Using lectins to harvest the plasma/ serum glycoproteome. Electrophoresis 2012;33:1746-1754.
  • 34 Kobayashi Y, Tateno H, Ogawa H, Yamamoto K, Hirabayashi J. Comprehensive list of lectins: Origins, natures, and carbohydrate specificities. Methods Mol Biol 2014;1200:555-577.
  • 35 Sparbier K, Asperger A, Resemann A, Kessler I, Koch S, Wenzel T, Stein G, Vorwerg L, Suckau D, Kostrzewa M. Analysis of glycoproteins in human serum by means of glycospecific magnetic bead separation and LC-MALDI-TOF/TOF analysis with automated glycopeptide detection. J Biomol Tech 2007;18:252-258.
  • 36 Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M. Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech 2005;16:407-413.
  • 37 Tang J, Liu Y, Yin P, Yao G, Yan G, Deng C, Zhang X. Concanavalin A- immobilized magnetic nanoparticles for selective enrichment of glycoproteins and application to glycoproteomics in hepatocellular carcinoma cell line. Proteomics 2010;10:2000-2014.
  • 38 Yang Z, Hancock WS. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J Chromatogr A 2004;1053:79-88.
  • 39 Qiu R, Regnier FE. Use of multidimensional lectin affinity chromatography in differential glycoproteomics. Anal Chem 2005;77:2802-2809.
  • 40 Madera M, Mechref Y. I., I., Novotny, M. V.: High-sensitivity profiling of glycoproteins from human blood serum through multiple-lectin affinity chromatography and liquid chromatography/tandem mass spectrometry. J Chromatogr B 2007;845:121-137.
  • 41 Zhang X, He X, Chen L, Zhang Y. Boronic acid modified magnetic nanoparticles for enrichment of glycoproteins via azide and alkyne click chemistry. J Mater Chem 2012;22:16520-16526.
  • 42 Lin Z-A, Zheng J-N, Lin F, Zhang L, Cai Z, Chen G-N. Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins. J Mater Chem 2011;21:518-524.
  • 43 Pan M, Sun Y, Zheng J, Yang W. Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein. ACS Appl Mater Interfaces 2013;5:8351-8358.
  • 44 Lin ZA, Pang JL, Lin Y, Huang H, Cai ZW, Zhang L, Chen GN. Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography. Analyst 2011;136:3281-3288.
  • 45 Lin Z, Pang J, Yang H, Cai Z, Zhang L, Chen G. One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chem Commun 2011;47:9675-9677.
  • 46 Lu Y-W, Chien C-W, Lin P-C, Huang L-D, Chen C-Y, Wu S-W, Han C-L,

Khoo K-H, Lin C-C, Chen Y-J. BAD-lectins: Boronic acid-decorated lectins with enhanced binding affinity for the selective enrichment of glycoproteins. Anal Chem 2013;85:8268-8276.

  • 47 Zhang H, Li X, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003;21:660-666.
  • 48 Sun B, Ranish JA, Utleg AG, White JT, Yan X, Lin B, Hood L. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol Cell Proteomics 2007;6:141-149.
  • 49 Tian Y, Zhou Y, Elliott S, Aebersold R, Zhang H. Solid-phase extraction of N-linked glycopeptides. Nat Protoc 2007;2:334-339.
  • 50 Larsen MR, Jensen SS, Jakobsen LA, Heegaard NHH. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 2007;6:1778-1787.
  • 51 Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S. Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Anal Biochem 2009;395:178-188.
  • 52 Thompson NJ, Rosati S, Rose RJ, Heck AJR. The impact of mass spectrometry on the study of intact antibodies: from post-translational modifications to structural analysis. Chem Commun 2013;49:538-548.
  • 53 Yang Y, Barendregt A, Kamerling JP, Heck AJR. Analyzing protein microheterogeneity in chicken ovalbumin by high-resolution native mass spectrometry exposes qualitatively and semi-quantitatively 59 proteoforms. Anal Chem 2013;85:12037-12045.
  • 54 Imre T, Schlosser G, Pocsfalvi G, Siciliano R, Molnar-Szollsi E, Kremmer T, Malorni A, Vekey K. Glycosylation site analysis of human alpha-1-acid glycoprotein (AGP) by capillary liquid chromatography - electrospray mass spectrometry. J Mass Spectrom 2005;40:1472-1483.
  • 55 Lin S, Yao G, Qi D, Li Y, Deng C, Yang P, Zhang X. Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin- immobilized magnetic silica microspheres. Anal Chem 2008;80:3655-3665.
  • 56 Annesley TM. Ion suppression in mass spectrometry. Clin Chem 2003;49:1041-1044.
  • 57 Carr SA, Huddleston MJ, Bean MF. Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 1993;2:183-196.
  • 58 Mirgorodskaya E, Roepstorff P, Zubarev RA. Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal Chem 1999;71:4431-4436.
  • 59 Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 2004;101:9528-9533.
  • 60 Hakansson K, Cooper HJ, Emmett MR, Costello CE, Marshall AG, Nilsson CL. Electron capture dissociation and infrared multiphoton dissociation MS/ MS of an N-glycosylated tryptic peptic to yield complementary sequence information. Anal Chem 2001;73:4530-4536.
  • 61 Gonzalez J, Takao T, Hori H, Besada V, Rodriguez R, Padron G, Shimonishi Y. A method for determination of N-glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: Identification of the positions of carbohydrate-linked asparagine in recombinant a-amylase by treatment with peptide-N- glycosidase F in 18O-labelled water. Anal Biochem 1992;205:151-158.
  • 62 Lee B-S, Krishnanchettiar S, Lateef SS, Gupta S. Characterization of oligosaccharide moieties of glycopeptides by microwave-assisted partial acid hydrolysis and mass spectrometry. Rapid Commun Mass Spectrom 2005;19:1545-1550.
  • 63 Muller S, Goletz S, Packer N, Gooley A, Lawson AM, Hanisch F-G. Localization of O-glycosylation sites on glycopeptide fragments from lactation-associated MUC1. All putative sites within the tandem repeat are glycosylation targets in vivo. J Biol Chem 1997;272:24780-24793.
  • 64 Juhasz P, Martin SA. The utility of nonspecific proteases in the characterization of glycoproteins by high-resolution time-of-flight mass spectrometry. Int J Mass Spectrom Ion Processes 1997;169/170:217-230.
  • 65 Coddeville B, Girardet J-M, Plancke Y, Campagna S, Linden G, Spik G. Structure of the O-glycopeptides isolated from bovine milk component PP3. Glycoconj J 1998;15:371-378.
  • 66 An HJ, Peavy TR, Hedrick JL, Lebrilla CB. Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 2003;75:5628-5637.
  • 67 Schiel JE, Smith NJ, Phinney KW. Universal proteolysis and MSn for N- and O-glycan branching analysis. J Mass Spectrom 2013;48:533-538.
  • 68 Hua S, Hu CY, Kim BJ, Totten SM, Oh MJ, Yun N, Nwosu CC, Yoo JS, Lebrilla CB, An HJ. Glyco-analytical multispecific proteolysis (Glyco-AMP): A simple method for detailed and quantitative glycoproteomic characterization.

J Proteome Res 2013;12:4414-4423.

  • 69 Dodds ED, Seipert RR, Clowers BH, German JB, Lebrilla CB. Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics. JProteome Res 2009;8:502-512.
  • 70 Alving K, Paulsen H, Peter-IKatalinic J. Characterization of O-glycosylation sites in MUC2 glycopeptides by nanoelectrospray QTOF mass spectrometry.

J Mass Spectrom 1999;34:395-407.

  • 71 Czeszak X, Morelle W, Ricart G, Tetaert D, Lemoine J. Localization of the O-glycosylated sites in peptides by fixed-charge derivatization with a phosphonium group. Anal Chem 2004;76:4320-4324.
  • 72 Zhou H, Froehlich JW, Briscoe AC, Lee RS. The GlycoFilter: A simple and comprehensive sample preparation platform for proteomics, A-glycomics and glycosylation site assignment. Mol Cell Proteomics 2013;12:2981-2991.
  • 73 Takasaki S, Misuochi T, Kobata A. Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides. Methods Enzymol 1982;83:263-268.
  • 74 Patel T, Bruce J, Merry A, Bigge C, Wormald M, Jaques A, Parekh R. Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry 1993;32:679-693.
  • 75 Merry AH, Neville DCA, Royle L, Matthews B, Harvey DJ, Dwek RA, Rudd PM. Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Anal Biochem 2002;304:91-99.
  • 76 Tanabe K, Ikenaka K. In-column removal of hydrazine and N-acetylation of oligosaccharides released by hydrazinolysis. Anal Biochem 2006;348:324-326.
  • 77 Bendiac B, Cumming DA. Hydrazinolysis-N-reacetylation of glycopeptides and glycoproteins. Model studies using 2-acetamido-1-N-(L-aspart-4-oyl)-2- deoxy-a-d-glucopyranosylamine. Carbohydr Res 1985;144:1-12.
  • 78 Carlson DM. Oligosaccharides isolated from pig submaxillary mucin. J Biol Chem 1966;241:2984-2986.
  • 79 Almeida A, Ferreira JA, Teixeira F, Gomes C, Cordeiro MNDS, Osorio H, Santos LL, Reis CA, Vitorino R, Amado F. Challenging the limits of detection of sialylated Thomsen-Friedenreich antigens by in-gel deglycosylation and nano-LC-MALDI-TOF-MS. Electrophoresis 2013;34:2337-2341.
  • 80 Kumagai T, Katoh T, Nix DB, Tiemeyer M, Aoki K. In-gel p-elimination and aqueous-organic partition for improved O- and sulfoglycomics. Anal Chem 2013;85:8692-8699.
  • 81 Rademaker GJ, Pergantis SA, Blok-Tip L, Langridge JI, Kleen A, Thomas- Oates JE. Mass spectrometric determination of the sites of O-glycan attachment with low picomolar sensitivity. Anal Biochem 1998;257:149-160.
  • 82 Huang Y, Mechref Y, Novotny MV. Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal Chem 2001;73:6063-6069.
  • 83 Huang Y, Konse T, Mechref Y, Novotny MV. Matrix-assisted laser desorption/ ionization mass spectrometry compatible p-elimination of O-linked oligosaccharides. Rapid Commun Mass Spectrom 2002;16:1199-1204.
  • 84 Miura Y, Kato K, Takegawa Y, Kurogochi M, Furukawa J-i, Shinohara Y, Nagahori N, Amano M, Hinou H, Nishimura S-I. Glycoblotting-assisted O-glycomics: Ammonium carbamate allows for highly efficient O-glycan release from glycoproteins. Anal Chem 2010;82:10021-10029.
  • 85 Tarelli E. Resistance to deglycosylation by ammonia of IgA1 O-glycopeptides: implications for the p-elimination of O-glycans linked to serine and threonine. Carbohydr Res 2007;342:2322-2325.
  • 86 Yu G, Zhang Y, Zhang Z, Song L, Wang P, Chai W. Effect and limitation of excess ammonium on the release of O-glycans in reducing forms from glycoproteins under mild alkaline conditions for glycomic and functional analysis. Anal Chem 2010;82:9534-9542.
  • 87 Zheng Y, Guo Z, Cai Z. Combination of p-elimination and liquid chromatography/quadrupole time-of-flight mass spectrometry for the determination of O-glycosylation sites. Talanta 2009;78:358-363.
  • 88 Tarentino AL, Gomez CM, Plummer TH Jr. Deglycosylation of asparagine- linked glycans by peptide:N-glycosidase F. Biochemistry 1985;24:4665-5671.
  • 89 Kuster B, Harvey DJ. Ammonium-containing buffers should be avoided during enzymatic release of glycans from glycoproteins when followed by reducing terminal derivatization. Glycobiology 1997;7:vii-ix.
  • 90 Harvey DJ, Rudd PM. Identification of by-products formed during the release of N-glycans with protein N-glycosidase F in the presence of dithiothreitol.

JMass Spectrom 2010;45:815-819.

  • 91 Tretter V, Altmann F, Marz L. Peptide-N4-(N-acetyl-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached a-1-3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem 1991;199:647-652.
  • 92 Sandoval WN, Arellano F, Arnott D, Raab H, Vandlen R, Lill JR. Rapid removal of N-linked oligosaccharides using microwave assisted enzyme catalyzed deglycosylation. Int J Mass Spectrom 2007;259:117-123.
  • 93 Tzeng Y-K, Chang C-C, Huang C-N, Wu C-C, Han C-C, Chang H-C. Facile MALDI-MS analysis of neutral glycans in NaOH-doped matrixes: Microwave- assisted deglycosylation and one-step purification with diamond nanoparticles. Anal Chem 2008;80:6809-6814.
  • 94 Szabo Z, Guttman A, Karger BL. Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology. Anal Chem 2010;82:2588-2593.
  • 95 Zhou Q, Park S-H, Boucher S, Higgins E, Lee K, Edmunds T. N-linked oligosaccharide analysis of glycoprotein bands from isoelectric focusing gels. Anal Biochem 2004;335:10-16.
  • 96 Kuster B, Wheeler SF, Hunter AP, Dwek RA, Harvey DJ. Sequencing of N-linked oligosaccharides directly from protein gels: In-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high performance liquid chromatography. Anal Biochem 1997;250:82-101.
  • 97 Wheeler SF, Harvey DJ. Extension of the in-gel release method for structural analysis of neutral and sialylated N-linked glycans to the analysis of sulphated glycans. Anal Biochem 2001;296:92-100.
  • 98 Charlwood J, Skehel JM, Camilleri P. Immobilisation of antibodies in gels allows the improved release and identification of glycans. Proteomics 2001;1:275-284.
  • 99 Mills PB, Mills K, Johnson AW, Clayton PT, Winchester BG. Analysis by matrix assisted laser desorption/ionisation-time of flight mass spectrometry of the post-translational modifications of ^-antitrypsin isoforms separated by two-dimensional polyacrylamide gel electrophoresis. Proteomics 2001;1:778-786.
  • 100 Charlwood J, Skehel JM, Camilleri P. Analysis of N-linked oligosaccharides released from glycoproteins separated by two-dimensional gel electrophoresis. Anal Biochem 2000;284:49-59.
  • 101 Charlwood J, Bryant D, Skehel JM, Camilleri P. Analysis of N-linked oligosaccharides: progress towards the characterization of glycoprotein- linked carbohydrates. Biomol Eng 2001;18:229-240.
  • 102 Callewaert N, Vervecken W, Van Hecke A, Contreras R. Use of a meltable polyacrylamide matrix for sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a procedure for N-glycan analysis on picomole amounts of glycoproteins. Anal Biochem 2002;303:93-95.
  • 103 Kolarich D, Altmann F. N-glycan analysis by matrix-assisted laser desorption/ionization mass spectrometry of electrophoretically separated nonmammalian proteins: Application to peanut allergen Ara h 1 and olive pollen allergen Ole e 1. Anal Biochem 2000;285:64-75.
  • 104 Altmann F, Paschinger K, Dalik T, Vorauer K. Characterisation of peptide-A4-(A-acetyl-p-glucosaminyl)asparagine amidase A and its N- glycans. Eur J Biochem 1998;252:118-123.
  • 105 Goodfellow JJ, Baruah K, Yamamoto K, Bonomelli C, Krishna B, Harvey DJ, Crispin M, Scanlan CN, Davis BG. An endoglycosidase with alternative glycan specificity allows broadened glycoprotein remodelling. J Am Chem Soc 2012;134:8030-8033.
  • 106 Yu YQ, Gilar M, Kaska J, Gebler JC. A rapid sample preparation method for mass spectrometric characterization of N-linked glycans. Rapid Commun Mass Spectrom 2005;19:2331-2336.
  • 107 Packer NH, Lawson MA, Jardine DR, Redmond JW. A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J 1998;15:737-747.
  • 108 Rouse JC, Vath JE. On-the-probe sample cleanup strategies for glycoprotein- released carbohydrates prior to matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Anal Biochem 1996;238:82-92.
  • 109 Bornsen KO, Mohr MD, Widmer HM. Ion exchange and purification of carbohydrates on a Nafion(R) membrane as a new sample pretreatment for matrix-assisted laser desorption-ionization mass spectrometry. Rapid Commun Mass Spectrom 1995;9:1031-1034.
  • 110 Dedvisitsakul P, Jacobsen S, Svensson B, Bunkenborg J, Finnie C, Hagglund P. Glycopeptide enrichment using a combination of ZIC-HILIC and cotton wool for exploring the glycoproteome of wheat flour albumins. J Proteome Res 2014;13:2696-2703.
  • 111 Nishimura S-I, Niikura K, Kurogochi M, Matsushita T, Fumoto M, Hinou H, Kamitani R, Nakagawa H, Deguchi K, Miura N, Monde K, Kondo H. High-throughput protein glycomics: combined use of chemoselective glycoblotting and MALDI-TOF/TOF mass spectrometry. Angew Chem Int Ed Engl 2005;44:91-96.
  • 112 Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Nonselective and efficient fluorescent labeling of glycans using 2- aminobenzamide and anthranilic acid. Anal Biochem 1995;230:229-238.
  • 113 Anumula KR. Quantitative monosaccharide analysis of glycoproteins as anthranilyl derivatives by reverse phase HPLC. Glycobiology 1993;3:511.
  • 114 Anumula KR. Unique anthranilic acid chemistry facilitates profiling and characterization of Ser/Thr-linked sugar chains following hydrazinolysis. Anal Biochem 2008;373:104-111.
  • 115 Anumula KR. Single tag for total carbohydrate analysis. Anal Biochem 2014;457:31-37.
  • 116 Hase S, Ibuki T, Ikenaka T. Reexamination of the pyridylamination used for fluorescence labelling of oligosaccharides and its application to glycoproteins. J Biochem 1984;95:197-203.
  • 117 Hase S. Analysis of sugar chains by pyridylamination. Methods Mol Biol 1993;14:69-80.
  • 118 Okamoto M, Takahashi K, Doi T, Takimoto Y. High-sensitivity detection and postsource decay of 2-aminopyridine-derivatized oligosaccharides with matrix-assisted laser desorption-ionization mass spectrometry. Anal Chem 1997;69:2919-2926.
  • 119 Harvey DJ. M-[2-Diethylamino)ethyl-4-aminobenzamide derivatives for high sensitivity mass spectrometric detection and structure determination of N- linked carbohydrates. Rapid Commun Mass Spectrom 2000;14:862-871.
  • 120 Poulter L, Burlingame AL. Desorption mass spectrometry of oligosaccharides coupled with hydrophobic chromophores. Methods Enzymol 1990;193:661-689.
  • 121 Takao T, Tambara Y, Nakamura A, Yoshino K-I, Fukuda H, Fukuda M, Shimonishi Y. Sensitive analysis of oligosaccharides derivatised with 4- aminobenzoic acid 2-(diethylamino)ethyl ester by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 1996;10:637-640.
  • 122 Naven TJP, Harvey DJ. Cationic derivatization of oligosaccharides with Girard's T reagent for improved performance in matrix-assisted laser desorption/ionization and electrospray mass spectrometry. Rapid Commun Mass Spectrom 1996;10:829-834.
  • 123 Li M, Kinzer JA. Structural analysis of oligosaccharides by a combination of electrospray mass spectrometry and bromine isotope tagging of reducing- end sugars with 2-amino-5-bromopyridine. Rapid Commun Mass Spectrom 2003;17:1462-1466.
  • 124 Harvey DJ. Halogeno-substituted 2-aminobenzoic acid derivatives for negative ion fragmentation studies of N-linked carbohydrates. Rapid Commun Mass Spectrom 2005;19:397-400.
  • 125 Suzuki S, Fujimori T, Yodoshi M. Recovery of free oligosaccharides from derivatives labeled by reductive amination. Anal Biochem 2006;354:94-103.
  • 126 Kuster B, Naven TJP, Harvey DJ. Effect of the reducing-terminal substituents on the high energy collision-induced dissociation matrix-assisted laser desorption/ionization mass spectra of oligosaccharides. Rapid Commun Mass Spectrom 1996;10:1645-1651.
  • 127 Lattova E, Perreault H. Labelling saccharides with phenylhydrazine for electrospray and matrix-assisted laser desorption-ionization mass spectrometry. J Chromatogr B 2003;793:167-179.
  • 128 Lattova E, Perreault H. Profiling of N-linked oligosaccharides using phenylhydrazine derivatization and mass spectrometry. J Chromatogr A 2003;1016:71-87.
  • 129 Lattova E, Perreault H. The usefulness of hydrazine derivatives for mass spectrometric analysis of carbohydrates. Mass Spectrom Rev 2013;32:366-385.
  • 130 Lattova E, Kapkova P, Krokhin O, Perreault H. Method for investigation of oligosaccharides from glycopeptides: Direct determination of glycosylation sites in proteins. Anal Chem 2006;78:2977-2984.
  • 131 Shinohara Y, Furukawa J, Niikura K, Miura N, Nishimura S-I. Direct N- glycan profiling in the presence of tryptic peptides on MALDI-TOF by controlled ion enhancement and suppression upon glycan-selective derivatization. Anal Chem 2004;76:6989-6997.
  • 132 Gouw JW, Burgers PC, Trikoupis MA, Terlouw JK. Derivatization of small oligosaccharides prior to analysis by matrix-assisted laser desorption/ ionization using glycidyltrimethylammonium chloride and Girard's reagent T. Rapid Commun Mass Spectrom 2002;16:905-912.
  • 133 Gil G-C, Kim Y-G, Kim B-G. A relative and absolute quantification of neutral N-linked oligosaccharides using modification with carboxymethyl trimethylammonium hydrazide and matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Anal Biochem 2008;379:45-59.
  • 134 Rajesh T, Jeon J-M, Song E, Park H-M, Seo HM, Kim H-J, Yi D-H, Kim Y-H, Choi K-Y, Kim Y-G, Park H-Y, Lee YK, Yang Y-H. Putative role of a Streptomyces coelicolor-derived a-mannosidase in deglycosylation and antibiotic production. Appl Biochem Biotechnol 2014;172:1639-1651.
  • 135 Chen P, Novotny MV. 2-Methyl-3-oxo-4-phenyl-2,3-dihydrofuran-2-yl acetate: a fluorogenic reagent for detection and analysis of primary amines. Anal Chem 1997;69:2806-2811.
  • 136 Harvey DJ. Derivatization of carbohydrates for analysis by chromatography, electrophoresis and mass spectrometry. J Chromatogr B 2011;879:1196-1225.
  • 137 Lamari FN, Kuhn R, Karamanos NK. Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis. J Chromatogr B 2003;793:15-36.
  • 138 Ruiz-Matute AI, Hernandez-Hernandez O, Rodriguez-Sanchez S, Sanz ML, Martinez-Castro I. Derivatization of carbohydrates for GC and GC-MS analyses. J Chromatogr B 2011;879:1226-1240.
  • 139 Bern M, Brito AE, Pang P-C, Rekhi A, Dell A, Haslam SM. Polylactosaminoglycan glycomics: Enhancing the detection of high- molecular-weight N-glycans in matrix-assisted laser desorption ionization time-of-flight profiles by matched filtering. Mol Cell Proteomics 2013;12:996-1004.
  • 140 Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalysed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem 1964;55:205-208.
  • 141 Levery SB. Use of permethylation with GC/MS for linkage and sequence analysis of oligosaccharides: Historical perspectives and recent developments. In: Large DG, Warren CD, editors. Glycopeptides and Related Compounds: Synthesis, Analysis and Applications. New York: Marcel Dekker Inc.; 1997. p 541-592.
  • 142 Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 1984;131:209-217.
  • 143 Ciucanu I, Costello CE. Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc 2003;125:16213-16219.
  • 144 Weiskopf AS, Vouros P, Harvey DJ. Characterization of oligosaccharide composition and structure by quadrupole ion trap mass spectrometry. Rapid Commun Mass Spectrom 1997;11:1493-1504.
  • 145 Kang P, Mechref Y, Klouckova I, Novotny MV. Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom 2005;19:3421-3428.
  • 146 Mechref Y, Kang P, Novotny MV. Solid-phase permethylation for glycomic analysis. Methods Mol Biol 2009;534:53-64.
  • 147 Kang P, Mechref Y, Novotny MV. High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom 2008;22:721-734.
  • 148 Robinson S, Routledge A, Thomas-Oates J. Characterisation and proposed origin of mass spectrometric ions observed 30 Th above the ionised molecules of per-O-methylated carbohydrates. Rapid Commun Mass Spectrom 2005;19:3681-3688.
  • 149 Jay A. The methylation reaction in carbohydrate analysis. J Carbohydr Chem 1996;15:897-923.
  • 150 Reinhold VN, Reinhold BB, Costello CE. Carbohydrate molecular weight profiling, sequence, linkage and branching data: ES-MS and CID. Anal Chem 1995;67:1772-1784.
  • 151 Morelle W, Slomianny MC, Diemer H, Schaeffer C, Dorsselaer AV, Michalski JC. Fragmentation characteristics of permethylated oligosaccharides using a matrix-assisted laser desorption/ionization two-stage time-of-flight (TOF/ TOF) tandem mass spectrometer. Rapid Commun Mass Spectrom 2004;18:2637-2649.
  • 152 Yu SY, Wu SW, Khoo KH. Distinctive characteristics of MALDI-Q/TOF and TOF/TOF tandem mass spectrometry for sequencing of permethylated complex type N-glycans. Glycoconj J 2006;23:355-369.
  • 153 Bjorndal H, Lindberg B, Svensson S. Mass spectrometry of partially methylated alditol acetates. Carbohydr Res 1967;5:433-440.
  • 154 Hellerqvist CG, Lindberg B, Svensson S, Holme T, Lindberg AA. Structural studies on the O-specific side-chains of the cell wall lipopolysaccharide from Salmonella typhimurium 395 ms. Carbohydr Res 1968;8:43-55.
  • 155 Lonngren J, Svensson S. Mass spectrometry in structural analysis of natural carbohydrates. Adv Carbohydr Chem Biochem 1974;29:41-106.
  • 156 Bjorndal H, Hellerqvist CG, Lindberg B, Svensson S. Gas-liquid chromatography and mass spectrometry in methylation analysis of polysaccharides. Angew Chem Int Ed Engl 1970;9:610-619.
  • 157 Lindberg B. Methylation analysis of polysaccharides. Methods Enzymol 1972;28:178-195.
  • 158 Lindberg B, Lonngren J. Methylation analysis of complex carbohydrates: General procedure and application for sequence analysis. Methods Enzymol 1978;50:3-33.
  • 159 Carpita NC, Shea EM. Linkage structure of carbohydrates by gas chromatography-mass spectrometry (GC-MS) of partially methylated alditol acetates. In: Biermann CJ, McGinnis GD, editors. Analysis of Carbohydrates by GLC and MS. Boca Raton: CRC Press; 1989. p 157-216.
  • 160 Hellerqvist CG. Linkage analysis using Lindberg method. Methods Enzymol 1990;193:554-573.
  • 161 Hanisch FG. Methylation analysis of complex carbohydrates: overview and critical comments. Biol Mass Spectrom 1994;23:309-312.
  • 162 Mizuochi T, Yonemasu K, Yamashita K, Kobata A. The asparagine-linked sugar chains of subcomponent Clq of the first component of human complement. J Biol Chem 1978;253:7404-7409.
  • 163 Sutton CW, O'Neill JA, Cottrell JS. Site-specific characterization of glycoprotein carbohydrates by exoglycosidase digestion and laser desorption mass spectrometry. Anal Biochem 1994;218:34-46.
  • 164 Royle L, Campbell MP, Radcliffe CM, White DM, Harvey DJ, Abrahams JL, Kim Y-G, Henry GW, Shadick NA, Weinblatt ME, Lee DM, Rudd PM, Dwek RA. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 2008;376:1-12.
  • 165 Dwek RA, Edge CJ, Harvey DJ, Wormald MR, Parekh RB. Analysis of glycoprotein-associated oligosaccharides. Annu Rev Biochem 1993;62:65-100.
  • 166 Mechref Y, Novotny MV. Mass spectrometric mapping and sequencing of N-linked oligosaccharides derived from submicrogram amounts of glycoproteins. Anal Chem 1998;70:455-463.
  • 167 Kuster B, Naven TJP, Harvey DJ. Rapid approach for sequencing neutral oligosaccharides by exoglycosidase digestion and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JMass Spectrom 1996;31:1131-1140.
  • 168 Colangelo J, Orlando R. On-target exoglycosidase digestions, MALDI-MS for determining the primary structures of carbohydrate chains. Anal Chem 1999;71:1479-1482.
  • 169 Schmitt S, Glebe D, Alving K, Tolle TK, Linder M, Geyer H, Linder D, Peter-Katalinic J, Gerlich WH, Geyer R. Analysis of the pre-S2 N- and O-linked glycans of the M surface protein from human hepatitis B virus.

J Biol Chem 1999;274:11945-11957.

  • 170 Geyer H, Schmitt S, Wuhrer M, Geyer R. Structural analysis of glycoconjugates by on-target enzymatic digestion and MALDI-TOF-MS. Anal Chem 1999;71:476-482.
  • 171 Wuhrer M, Deelder AM, Hokke CH. Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B 2005;825:124-133.
  • 172 Novotny MV, Mechref Y. New hyphenated methodologies in high-sensitivity glycoprotein analysis. J Sep Sci 2005;28:1956-1968.
  • 173 Mechref Y, Novotny MV. Miniaturized separation techniques in glycomic investigations. J Chromatogr B 2006;841:65-78.
  • 174 Royle L, Mattu TS, Hart E, Langridge JI, Merry AH, Murphy N, Harvey DJ, Dwek RA, Rudd PM. An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal Biochem 2002;304:70-90.
  • 175 Morelle W, Page A, Michalski J-C. Electrospray ionization ion trap mass spectrometry for structural characterization of oligosaccharides derivatized with 2-aminobenzamide. Rapid Commun Mass Spectrom 2005;19:1145-1158.
  • 176 Karlsson J, Momcilovic D, Wittgren B, Schulein M, Tjerneld F, Brinkmalm G. Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45A core from Trichoderma reesei. Biopolymers 2002;63:32-40.
  • 177 Friedl CH, Lochnit G, Zahringer U, Bahr U, Geyer R. Structural elucidation of zwitterionic carbohydrates derived from glycosphingolipids of the porcine parasitic nematode Ascaris suum. Biochem J 2003;369:89-102.
  • 178 Karlsson NG, Wilson NL, Wirth H-J, Dawes P, Joshi H, Packer NH. Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Commun Mass Spectrom 2004;18:2282-2292.
  • 179 Liu Y, Urgaonkar S, Verkade JG, Armstrong DW. Separation and characterization of underivatized oligosaccharides using liquid chromatography and liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 2005;1079:146-152.
  • 180 Alpert AJ, Shukla M, Shukla AK, Zieske LR, Yuen SW, Ferguson MA, Mehlert A, Pauly M, Orlando R. Hydrophilic-interaction chromatography of complex carbohydrates. J Chromatogr A 1994;676:191-202.
  • 181 Zauner G, Deelder AM, Wuhrer M. Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis 2011;32:3456-3466.
  • 182 Froesch M, Bindila LM, Baykut G, Allen M, Peter-Katalinic J, Zamfir AD. Coupling of fully automated chip electrospray to Fourier transform ion cyclotron resonance mass spectrometry for high-performance glycoscreening and sequencing. Rapid Commun Mass Spectrom 2004;18:3084-3092.
  • 183 Zamfir A, Vakhrushev S, Sterling A, Niebel HJ, Allen M, Peter-Katalinic J. Fully automated chip-based mass spectrometry for complex carbohydrate system analysis. Anal Chem 2004;76:2046-2054.
  • 184 Zhang S, Chelius D. Characterization of protein glycosylation using chip-based infusion nanoelectrospray linear ion trap. J Biomol Tech 2004;15:120-133.
  • 185 Karlsson H, Hansson GC. Gas chromatography and gas chromatography/ mass spectrometry for the characterization of complex mixtures of large oligosaccharides. J High Resolut Chromatogr 1988;11:820-824.
  • 186 Hansson GC, Li YT, Karlsson H. Characterization of glycosphingolipid mixtures with up to ten sugars by gas chromatography and gas chromatography-mass spectrometry as permethylated oligosaccharides and ceramides released by ceramide glycanase. Biochemistry 1989;28:6672-6678.
  • 187 Karlsson H, Carlstedt I, Hansson GC. The use of gas chromatography and gas chromatography - mass spectrometry for the characterisation of permethylated oligosaccharides with molecular mass up to 2300. Anal Biochem 1989;182:438-446.
  • 188 Hansson GC, Karlsson H. High-mass gas chromatography-mass spectrometry of permethylated oligosaccharides. Methods Enzymol 1990;193:733-738.
  • 189 Hansson GC, Karlsson H. Gas chromatography and gas chromatography- mass spectrometry of glycoprotein oligosaccharides. In: Hounsell EF, editor. Methods Molec. Biol. Totowa: Humana Press; 1993. p 47-54.
  • 190 Karlsson H, Karlsson N, Hansson GC. High-temperature gas chromatography-mass spectrometry of glycoprotein and glycosphingolipid oligosaccharides. Mol Biotechnol 1994;1:165-180.
  • 191 Barber M, Bordoli RS, Sedgwick RD, Tyler AN. Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry. Chem Commun 1981:325-327.
  • 192 Dell A. FAB Mass spectrometry of carbohydrates. Adv Carbohydr Chem Biochem 1987;45:19-72.
  • 193 Dell A, Carman NH, Tiller PR, Thomas-Oates JE. Fast atom bombardment mass spectrometric strategies for characterising carbohydrate-containing biopolymers. BiomedEnviron Mass Spectrom 1987;16:19-24.
  • 194 Dell A, Thomas-Oates JE. Fast atom bombardment-mass spectrometry (FAB-MS): Sample preparation and analytical strategies. In: Biermann CJ, McGinnis GD, editors. Analysis of Carbohydrates by GLC and MS. Boca Raton: CRC Press; 1989. p 217-235.
  • 195 Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science 2001;291:2351-2356.
  • 196 Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int JMass Spectrom Ion Processes 1987;78:53-68.
  • 197 Mock KK, Davy M, Cottrell JS. The analysis of underivatised oligosaccharides by matrix-assisted laser desorption mass spectrometry. Biochem Biophys Res Commun 1991;177:644-651.
  • 198 Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 1999;18:349-451.
  • 199 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 1999-2000. Mass Spectrom Rev 2006;25:595-662.
  • 200 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 2001-2002. Mass Spectrom Rev 2008;27:125-201.
  • 201 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. Mass Spectrom Rev 2009;28:273-361.
  • 202 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for the period 2005-2006. Mass Spectrom Rev 2011;30:1-100.
  • 203 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2007-2008. Mass Spectrom Rev 2012;31:183-311.
  • 204 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2009-2010. Mass Spectrom Rev 2015;34:268-422.
  • 205 Strupat K, Karas M, Hillenkamp F. 2,5-Dihydroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry. Int JMass Spectrom Ion Processes 1991;111:89-102.
  • 206 Kussmann M, Nordhoff E, Rehbek-Nielsen H, Haebel S, Rossel-Larsen M, Jakobsen L, Gobom J, Mirgorodskaya E, Kroll-Kristensen A, Palm L, Roepstorff P. Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. J Mass Spectrom 1997;32:593-601.
  • 207 Karas M, Ehring H, Nordhoff E, Stahl B, Strupat K, Hillenkamp F, Grehl M, Krebs B. Matrix-assisted laser desorption/ionization mass spectrometry with additives to 2,5-dihydroxybenzoic acid. OrgMass Spectrom 1993;28:1476-1481.
  • 208 Mohr MD, Bornsen KO, Widmer HM. Matrix-assisted laser desorption/ ionization mass spectrometry: Improved matrix for oligosaccharides. Rapid Commun Mass Spectrom 1995;9:809-814.
  • 209 Gusev AI, Wilkinson WR, Proctor A, Hercules DM. Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Anal Chem 1995;67:1034-1041.
  • 210 Mechref Y, Novotny MV. Matrix-assisted laser desorption/ionization mass spectrometry of acidic glycoconjugates facilitated by the use of spermine as a co-matrix. J Am Soc Mass Spectrom 1998;9:1292-1302.
  • 211 Harvey DJ. Quantitative aspects of the matrix-assisted laser desorption mass spectrometry of complex oligosaccharides. Rapid Commun Mass Spectrom 1993;7:614-619.
  • 212 Tsarbopoulos A, Bahr U, Pramanik BN, Karas M. Glycoprotein analysis by delayed extraction and post-source decay MALDI-TOF-MS. Int J Mass Spectrom Ion Processes 1997;169/170:251-261.
  • 213 Harvey DJ, Hunter AP, Bateman RH, Brown J, Critchley G. The relationship between in-source and post-source fragment ions in the MALDI mass spectra of carbohydrates recorded with reflectron-TOF mass spectrometers. Int J Mass Spectrom Ion Processes 1999;188:131-146.
  • 214 Powell AK, Harvey DJ. Stabilisation of sialic acids in N-linked oligosaccharides and gangliosides for analysis by positive ion matrix-assisted laser desorption-ionization mass spectrometry. Rapid Commun Mass Spectrom 1996;10:1027-1032.
  • 215 Mechref Y, Kang P, Novotny MV. Differentiating structural isomers of sialylated glycans by matrix-assisted laser desorption/ionization time-of- flight/time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 2006;20:1381-1389.
  • 216 Sekiya S, Wada Y, Tanaka K. Derivatization for stabilizing sialic acids in MALDI-MS. Anal Chem 2005;77:4962-4968.
  • 217 Zhang Q, Feng X, Li H, Liu B-F, Lin Y, Liu X. Methylamidation for isomeric profiling of sialylated glycans by nanoLC-MS. Anal Chem 2014;86:7913-7919.
  • 218 Ueki M, Yamaguchi M. Analysis of acidic carbohydrates as their quaternary ammonium or phosphonium salts by matrix-assisted laser desorption/ ionization mass spectrometry. Carbohydr Res 2005;340:1722-1731.
  • 219 Wheeler SF, Domann P, Harvey DJ. Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of a(2-3) and a(2-6) isomers. Rapid Commun Mass Spectrom 2009;23:303-312.
  • 220 Papac DI, Wong A, Jones AJS. Analysis of acidic oligosaccharides and glycopeptides by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 1996;68:3215-3223.
  • 221 Schulz E, Karas M, Rosu F, Gabelica V. Influence of the matrix on analyte fragmentation in atmospheric pressure MALDI. J Am Soc Mass Spectrom 2006;17:1005-1013.
  • 222 Von Seggern CE, Moyer SC, Cotter RJ. Liquid infrared atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry of sialylated carbohydrates. Anal Chem 2003;75:3212-3218.
  • 223 Von Seggern CE, Zarek PE, Cotter RJ. Fragmentation of sialylated carbohydrates using infrared atmospheric pressure MALDI ion trap mass spectrometry from cation-doped liquid matrixes. Anal Chem 2003;75:6523-6530.
  • 224 Tan PV, Taranenko NI, Laiko VV, Yakshin MA, Prasad CR, Doroshenko VM. Mass spectrometry of N-linked oligosaccharides using atmospheric pressure infrared laser ionization from solution. J Mass Spectrom 2004;39:913-921.
  • 225 Von Seggern CE, Gardner BD, Cotter RJ. Infrared atmospheric pressure MALDI ion trap mass spectrometry of frozen samples using a Peltier-cooled sample stage. Anal Chem 2004;76:5887-5893.
  • 226 Moyer SC, Marzilli LA, Woods AS, Laiko VV, Doroshenko VM, Cotter RJ. Atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) on a quadrupole ion trap mass spectrometer. Int J Mass Spectrom 2003;226:133-150.
  • 227 Zhang J, LaMotte L, Dodds ED, Lebrilla CB. Atmospheric pressure MALDI Fourier transform mass spectrometry of labile oligosaccharides. Anal Chem 2005;77:4429-4438.
  • 228 Dell A, Morris HR, Greer F, Redfern JM, Rogers ME, Wisshaar G, Hiyama J, Renwick AGC. Fast-atom-bombardment mass spectrometry of sulphated oligosaccharides from ovine lutropin. Carbohydr Res 1991;209:33-50.
  • 229 Harvey DJ, Bousfield GR. Differentiation between sulphated and phosphated carbohydrates in low-resolution matrix-assisted laser desorption/ionization mass spectra. Rapid Commun Mass Spectrom 2005;19:287-288.
  • 230 Irungu J, Dalpathado DS, Go EP, Jiang H, Ha H-V, Bousfield GR, Desaire H. Method for characterizing sulfated glycoproteins in a glycosylation site- specific fashion, using ion pairing and tandem mass spectrometry. Anal Chem 2006;78:1181-1190.
  • 231 Zhang Y, Jiang H, Go EP, Desaire H. Distinguishing phosphorylation and sulfation in carbohydrates and glycoproteins using ion-pairing and mass spectrometry. J Am Soc Mass Spectrom 2006;17:1282-1288.
  • 232 Takashiba M, Chiba Y, Jigami Y. Identification of phosphorylation sites in N-linked glycans by matrix-assisted laser desorption/ionization time-of- flight mass spectrometry. Anal Chem 2006;78:5208-5213.
  • 233 Lei M, Mechref Y, Novotny MV. Structural analysis of sulfated glycans by sequential double-permethylation using methyl iodide and deuteromethyl iodide. J Am Soc Mass Spectrom 2009;20:1660-1671.
  • 234 Stahl B, Steup M, Karas M, Hillenkamp F. Analysis of neutral oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 1991;63:1463-1466.
  • 235 Nonami H, Tanaka K, Fukuyama Y, Erra-Balsells R. p-Carboline alkaloids as matrices for UV-Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in positive and negative ion modes. Analysis of proteins of high molecular mass, and of cyclic and acyclic oligosaccharides. Rapid Commun Mass Spectrom 1998;12:285-296.
  • 236 Yamagaki T, Suzuki H, Tachibana K. In-source and postsource decay in negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of neutral oligosaccharides. Anal Chem 2005;77:1701-1707.
  • 237 Domann P, Spencer DIR, Harvey DJ. Production and fragmentation of negative ions from neutral N-linked carbohydrates ionized by matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom 2012;26:469-479.
  • 238 Cai Y, Jiang Y, Cole RB. Anionic adducts of oligosaccharides by matrix- assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 2003;75:1638-1644.
  • 239 Becher J, Muck A, Mithofer A, Svatos A, Boland W. Negative ion mode matrix-assisted laser desorption/ionisation time-of-flight mass spectrometric analysis of oligosaccharides using halide adducts and 9-aminoacridine matrix. Rapid Commun Mass Spectrom 2008;22:1153-1158.
  • 240 Tholey A, Heinzle E. Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives. Anal Bioanal Chem 2006;386:24-37.
  • 241 Mank M, Stahl B, Boehm G. 2,5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules. Anal Chem 2004;76:2938-2950.
  • 242 Naven TJP, Harvey DJ. Effect of structure on the signal strength of oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry on time-of-flight and magnetic sector instruments. Rapid Commun Mass Spectrom 1996;10:1361-1366.
  • 243 Siemiatkoski J, Lyubarskaya Y, Houde D, Tep S, Mhatre R. A comparison of three techniques for quantitative carbohydrate analysis used in characterization of therapeutic antibodies. Carbohydr Res 2006;341:410-419.
  • 244 Harvey DJ. Collision-induced fragmentation of underivatised N-linked carbohydrates ionized by electrospray. JMass Spectrom 2000;35:1178-1190.
  • 245 Harvey DJ, Bateman RH, Green MR. High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 1997;32:167-187.
  • 246 Harvey DJ, Bateman RH, Bordoli RS, Tyldesley R. Ionization and fragmentation of complex glycans with a Q-TOF mass spectrometer fitted with a MALDI ion source. Rapid Commun Mass Spectrom 2000;14:2135-2142.
  • 247 Harvey DJ. Electrospray mass spectrometry and collision-induced fragmentation of 2-aminobenzamide-labelled neutral N-linked glycans. Analyst 2000;125:609-617.
  • 248 Harvey DJ. Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatised at the reducing terminus. J Am Soc Mass Spectrom 2000;11:900-915.
  • 249 Wong AW, Cancilla MT, Voss LR, Lebrilla CB. Anion dopant for oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 1999;71:205-211.
  • 250 Cole RB, Zhu J. Chloride ion attachment in negative ion electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 1999;13:607-611.
  • 251 Wong AW, Wang H, Lebrilla CB. Selection of anionic dopant for quantifying desialylation reactions with MALDI-FTMS. Anal Chem 2000;72:1419-1425.
  • 252 Zhu J, Cole RB. Formation and decomposition of chloride adduct ions,

[M + Cl]-, in negative ion electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 2000;11:932-941.

  • 253 Cai Y, Concha MC, Murray JS, Cole RB. Evaluation of the role of multiple hydrogen bonding in offering stability to negative ion adducts in electrospray mass spectrometry. J Am Soc Mass Spectrom 2002;13:1360-1369.
  • 254 Harvey DJ. Fragmentation of negative ions from carbohydrates: Part 1; Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J Am Soc Mass Spectrom 2005;16:622-630.
  • 255 Bahr U, Pfenninger A, Karas M, Stahl B. High sensitivity analysis of neutral underivatized oligosaccharides by nanoelectrospray mass spectrometry. Anal Chem 1997;69:4530-4535.
  • 256 Spengler B, Kirsch D, Kaufmann R, Lemoine J. Structure analysis of branched oligosaccharides using post-source decay in matrix-assisted laser desorption/ ionization mass spectrometry. J Mass Spectrom 1995;30:782-787.
  • 257 Shevchenko A, Loboda A, Shevchenko A, Ens W, Standing KG. MALDI Quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research. Anal Chem 2000;72:2132-2141.
  • 258 Verhaert P, Uttenweiler-Joseph S, de Vries M, Loboda A, Ens W, Standing KG. Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: An elegant tool for peptidomics. Proteomics 2001;1:118-131.
  • 259 Loboda AV, Krutchinsky AN, Bromirski M, Ens W, Standing KG. A quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun Mass Spectrom 2000;14:1047-1057.
  • 260 Spina E, Sturiale L, Romeo D, Impallomeni G, Garozzo D, Waidelich D, Glueckmann M. New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates. Rapid Commun Mass Spectrom 2004;18:392-398.
  • 261 Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 1988;5:397-409.
  • 262 Harvey DJ, Martin RL, Jackson KA, Sutton CW. Fragmentation of N-linked glycans with a MALDI-ion trap time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 2004;18:2997-3007.
  • 263 Huberty MC, Vath JE, Yu W, Martin SA. Site-specific carbohydrate identification in recombinant proteins using MALD-TOF MS. Anal Chem 1993;65:2791-2800.
  • 264 Kaufmann R, Chaurand P, Kirsch D, Spengler B. Post-source decay and delayed extraction in matrix-assisted laser desorption/ionization-reflectron time-of-flight mass spectrometry. Are there trade-offs? Rapid Commun Mass Spectrom 1996;10:1199-1208.
  • 265 Clayton E, Bateman RH. Time-of-flight mass analysis of high-energy collision-induced dissociation fragment ions. Rapid Commun Mass Spectrom 1992;6:719-720.
  • 266 Morelle W, Slomianny M-C, Diemer H, Schaeffer C, van Dorsselaer A, Michalski J-C. Structural characterization of 2-aminobenzamide-derivatized oligosaccharides using a matrix-assisted laser desorption/ionization two- stage time-of-flight tandem mass spectrometer. Rapid Commun Mass Spectrom 2005;19:2075-2084.
  • 267 Conboy JJ, Henion JD. The determination of glycopeptides by liquid chromatography/mass spectrometry with collision-induced dissociation. JxAm Soc Mass Spectrom 1992;3:804-814.
  • 268 Huddleston MJ, Bean MF, Carr SA. Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS - Methods for selective detection of glycopeptides in protein digests. Anal Chem 1993;65:877-884.
  • 269 Wuhrer M, Catalina MI, Deelder AM, Hokke CH. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B 2007;849:115-128.
  • 270 Kolli V, Dodds ED. Energy-resolved collision-induced dissociation pathways of model N-linked glycopeptides: implications for capturing glycan connectivity and peptide sequence in a single experiment. Analyst 2014;139:2144-2153.
  • 271 Han L, Costello CE. Electron transfer dissociation of milk oligosaccharides. J Am Soc Mass Spectrom 2011;22:997-1013.
  • 272 Xie Y, Lebrilla CB. Infrared multiphoton dissociation of alkali metal- coordinated oligosaccharides. Anal Chem 2003;75:1590-1598.
  • 273 Lancaster KS, An HJ, Li B, Lebrilla CB. Interrogation of N-linked oligosaccharides using infrared multiphoton dissociation in FT-ICR mass spectrometry. Anal Chem 2006;78:4990-4997.
  • 274 Adamson JT, Hakansson K. Infrared multiphoton dissociation and electron capture dissociation of high-mannose type glycopeptides. JProteome Res 2006;5:493-501.
  • 275 Zhang J, Schubothe K, Li B, Russell S, Lebrilla CB. Infrared multiphoton dissociation of O-linked mucin-type oligosaccharides. Anal Chem 2005;77:208-214.
  • 276 Weiskopf AS, Vouros P, Harvey DJ. Electrospray ionization-ion trap mass spectrometry for structural analysis of complex N-linked glycoprotein oligosaccharides. Anal Chem 1998;70:4441-4447.
  • 277 Ashline D, Singh S, Hanneman A, Reinhold V. Congruent strategies for carbohydrate sequencing. 1. Mining structural details by MSn. Anal Chem 2005;77:6250-6262.
  • 278 Ashline DJ, Lapadula AJ, Liu Y-H, Lin ML, Grace M, Pramanik B, Reinhold VN. Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal Chem 2007;79:3830-3842.
  • 279 Ojima N, Masuda K, Tanaka K, Nishimura O. Analysis of neutral oligosaccharides for structural characterization by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry. J Mass Spectrom 2005;40:380-388.
  • 280 Kurimoto A, Daikoku S, Mutsuga S, Kanie O. Analysis of energy-resolved mass spectra at MSn in a pursuit to characterize structural isomers of oligosaccharides. Anal Chem 2006;78:3461-3466.
  • 281 Deguchi K, Ito H, Takegawa Y, Shinji N, Nakagawa H, Nishimura SI. Complementary structural information of positive- and negative-ion MSn spectra of glycopeptides with neutral and sialylated N-glycans. Rapid Commun Mass Spectrom 2006;20:741-746.
  • 282 Takemori N, Komori N, Matsumoto H. Highly sensitive multistage mass spectrometry enables small-scale analysis of protein glycosylation from two-dimensional polyacrylamide gels. Electrophoresis 2006;27:1394-1406.
  • 283 Wuhrer M, Deelder AM. Matrix-assisted laser desorption/ionization in-source decay combined with tandem time-of-flight mass spectrometry of permethylated oligosaccharides: targeted characterization of specific parts of the glycan structure. Rapid Commun Mass Spectrom 2006;20:943-951.
  • 284 Kovacik V, Hirsch J, Kovac P, Heerma W, Thomas-Oates J, Haverkamp J. Oligosaccharide characterization using collision-induced dissociation fast atom bombardment mass spectrometry: Evidence for internal monosaccharide residue loss. J Mass Spectrom 1995;30:949-958.
  • 285 Brull LP, Heerma W, Thomas-Oates J, Haverkamp J, Kovacik V, Kovac P. Loss of internal 1-6 substituted monosaccharide residues from underivatized and per-O-methylated trisaccharides. J Am Soc Mass Spectrom 1997;8:43-49.
  • 286 Warrack BM, Hail ME, Triolo A, Animati F, Seraglia R, Traldi P. Observation of internal monosaccharide losses in the collisionally activated dissociation mass spectra of anthracycline aminodisaccharides. J Am Soc Mass Spectrom 1998;9:710-715.
  • 287 Mattu TS, Royle L, Langridge J, Wormald MR, Van den Steen PE, Van Damme J, Opdenakker G, Harvey DJ, Dwek RA, Rudd PM. O-glycan analysis of natural human neutrophil gelatinase B using a combination of normal phase- HPLC and online tandem mass spectrometry: Implications for the domain organization of the enzyme. Biochemistry 2000;39:15695-15704.
  • 288 Wuhrer M, Koeleman CA, Hokke CH, Deelder AM. Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun Mass Spectrom 2006;20:1747-1754.
  • 289 Franz AH, Lebrilla CB. Evidence for long-range glycosyl transfer reactions in the gas phase. J Am Soc Mass Spectrom 2002;13:325-337.
  • 290 Harvey DJ, Mattu TS, Wormald MR, Royle L, Dwek RA, Rudd PM. "Internal residue loss": rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal Chem 2002;74:734-740.
  • 291 Brull LP, Kovacik V, Thomas-Oates JE, Heerma W, Haverkamp J. Sodium- cationized oligosaccharides do not appear to undergo ‘internal residue loss' rearrangement processes on tandem mass spectrometry. Rapid Commun Mass Spectrom 1998;12:1520-1532.
  • 292 Ngoka LC, Gal J-F, Lebrilla CB. Effects of cations and charge types on the metastable decay rates of oligosaccharides. Anal Chem 1994;66:692-698.
  • 293 Cancilla MT, Penn SG, Carroll JA, Lebrilla CB. Coordination of alkali metals to oligosaccharides dictates fragmentation behavior in matrix assisted laser desorption ionization/Fourier transform mass spectrometry. J Am Chem Soc 1996;118:6736-6745.
  • 294 Orlando R, Bush CA, Fenselau C. Structural analysis of oligosaccharides by tandem mass spectrometry: Collisional activation of sodium adduct ions. BiomedEnviron Mass Spectrom 1990;19:747-754.
  • 295 Mechref Y, Novotny MV, Krishnan C. Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. Anal Chem 2003;75:4895-4903.
  • 296 Stephens E, Maslen SL, Green LG, Williams DH. Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 2004;76:2343-2354.
  • 297 Wuhrer M, Deelder AM. Negative-mode MALDI-TOF/TOF-MS of oligosaccharides labeled with 2-aminobenzamide. Anal Chem 2005;77:6954-6959.
  • 298 Lewandrowski U, Resemann A, Sickmann A. Laser-induced dissociation/ high-energy collision-induced dissociation fragmentation using MALDI- TOF/TOF-MS instrumentation for the analysis of neutral and acidic oligosaccharides. Anal Chem 2005;77:3274-3283.
  • 299 Devakumar A, Thompson MS, Reilly JP. Fragmentation of oligosaccharide ions with 157 nm vacuum ultraviolet light. Rapid Commun Mass Spectrom 2005;19:2313-2320.
  • 300 Kurogochi M, Nishimura S-I. Structural characterization of N-glycopeptides by matrix-dependent selective fragmentation of MALDI-TOF/TOF tandem mass spectrometry. Anal Chem 2004;76:6097-6101.
  • 301 Boutreau L, Leon E, Salpin J-Y, Amekraz B, Moulin C, Tortajada J. Gas-phase reactivity of silver and copper coordinated monosaccharide cations studied by electrospray ionization and tandem mass spectrometry. Eur J Mass Spectrom 2003;9:377-390.
  • 302 Harvey DJ. Ionization and fragmentation of N-linked glycans as silver adducts by electrospray mass spectrometry. Rapid Commun Mass Spectrom 2005;19:484-492.
  • 303 Harvey DJ. Ionization and collision-induced fragmentation of N-linked and related carbohydrates using divalent cations. J Am Soc Mass Spectrom 2001;12:926-937.
  • 304 Harvey DJ. Fragmentation of negative ions from carbohydrates: Part 2, Fragmentation of high-mannose N-linked glycans. J Am Soc Mass Spectrom 2005;16:631-646.
  • 305 Harvey DJ. Fragmentation of negative ions from carbohydrates: Part 3, Fragmentation of hybrid and complex N-linked glycans. J Am Soc Mass Spectrom 2005;16:647-659.
  • 306 Harvey DJ, Royle L, Radcliffe CM, Rudd PM, Dwek RA. Structural and quantitative analysis of N-linked glycans by MALDI and negative ion nanospray mass spectrometry. Anal Biochem 2008;376:44-60.
  • 307 Cai Y, Cole RB. Stabilization of anionic adducts in negative ion electrospray mass spectrometry. Anal Chem 2002;74:985-991.
  • 308 Jiang Y, Cole RB. Oligosaccharide analysis using anion attachment in negative mode electrospray mass spectrometry. J Am Soc Mass Spectrom 2005;16:60-70.
  • 309 Yamagaki T, Suzuki H, Tachibana K. Semiquantitative analysis of isomeric oligosaccharides by negative-ion mode UV-MALDI TOF postsource decay mass spectrometry and their fragmentation mechanism study at N-acetyl hexosamine moiety. J Mass Spectrom 2006;41:454-462.
  • 310 Takegawa Y, Deguchi K, Ito S, Yoshioka S, Nakagawa H, Nishimura S-I. Structural assignment of isomeric 2-aminopyridine-derivatized oligosaccharides using negative-ion MSn spectral matching. Rapid Commun Mass Spectrom 2005;19:937-946.
  • 311 Chai W, Piskarev V, Lawson AM. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal Chem 2001;73:651-657.
  • 312 Chai W, Piskarev V, Lawson AM. Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J Am Soc Mass Spectrom 2002;13:670-679.
  • 313 Sagi D, Peter-Katalinic J, Conradt HS, Nimtz M. Sequencing of tri- and tetraantennary N-glycans containing sialic acid by negative mode ESI QTOF tandem MS. J Am Soc Mass Spectrom 2002;13:1138-1148.
  • 314 Wheeler SF, Harvey DJ. Negative ion mass spectrometry of sialylated carbohydrates: Discrimination of N-acetylneuraminic acid linkages by matrix-assisted laser desorption/ionization-time-of-flight and electrospray- time-of-flight mass spectrometry. Anal Chem 2000;72:5027-5039.
  • 315 Harvey DJ, Crispin M, Scanlan C, Singer BB, Lucka L, Chang VT, Radcliffe CM, Thobhani S, Yuen C-T, Rudd PM. Differentiation between isomeric triantennary N-linked glycans by negative ion tandem mass spectrometry and confirmation of glycans containing galactose attached to the bisecting (p1-4-GlcNAc) residue in N-glycans from IgG. Rapid Commun Mass Spectrom 2008;22:1047-1052.
  • 316 Harvey DJ. Collision-induced fragmentation of negative ions from N-linked glycans derivatized with 2-aminobenzoic acid. J Mass Spectrom 2005;40:642-653.
  • 317 Harvey DJ, Rudd PM. Fragmentation of negative ions from N-linked carbohydrates. Part 5: Anionic N-linked glycans. Int J Mass Spectrom 2011;305:120-130.
  • 318 Karlsson NG, Schulz BL, Packer NH. Structural determination of neutral O-linked oligosaccharide alditols by negative ion LC-electrospray-MSn. J Am Soc Mass Spectrom 2004;15:659-672.
  • 319 Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE. Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem 2008;1:293-327.
  • 320 Kanu AB, Dwivedi P, Tam M, Matz L, Hill HHJ. Ion mobility-mass spectrometry. J Mass Spectrom 2008;43:1-22.
  • 321 Fenn LS, McLean JA. Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys Chem Chem Phys 2011;13:2196-2205.
  • 322 Pagel K, Harvey DJ. Ion mobility mass spectrometry of complex carbohydrates - collision cross sections of sodiated N-linked glycans. Anal Chem 2013;85:5138-5145.
  • 323 Hofmann J, Struwe WB, Scarff CA, Scrivens JH, Harvey DJ, Pagel K. Estimating collision cross sections of negatively charged N-glycans using travelling wave ion mobility-mass spectrometry. Anal Chem 2014;86:10789-10795.
  • 324 Huang Y, Gelb SA, Dodds ED. Carbohydrate and glycoconjugate analysis by ion mobility mass spectrometry: Opportunities and challenges. Curr Metabolomics 2013;1:291-305.
  • 325 Plasencia MD, Isailovic D, Merenbloom SI, Mechref Y, Clemmer DE. Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS. J Am Soc Mass Spectrom 2008;19:1706-1715.
  • 326 Williams JP, Grabenauer M, Carpenter CJ, Holland RJ, Wormald MR, Giles K, Harvey DJ, Bateman RH, Scrivens JH, Bowers MT. Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int J Mass Spectrom 2010;298:119-127.
  • 327 Harvey DJ, Edgeworth M, Krishna BA, Bonomelli C, Allman S, Crispin M, Scrivens JH. Fragmentation of negative ions from N-linked carbohydrates: Part 6: Glycans containing one N-acetylglucosamine in the core. Rapid Commun Mass Spectrom 2014;28:2008-2018.
  • 328 Isailovic D, Plasencia MD, Gaye MM, Stokes ST, Kurulugama RT, Pungpapong V, Zhang M, Kyselova Z, Goldman R, Mechref Y, Novotny MV, Clemmer DE. Delineating diseases by IMS-MS profiling of serum N-linked glycans. JProteome Res 2012;11:576-585.
  • 329 Fenn LS, Kliman M, Mahsut A, Zhao SR, McLean JA. Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal Bioanal Chem 2009;394:235-244.
  • 330 Fenn LS, McLean JA. Biomolecular structural separations by ion mobility- mass spectrometry. Anal Bioanal Chem 2008;391:905-909.
  • 331 Fenn LS, McLean JA. Simultaneous glycoproteomics on the basis of structure using ion mobility-mass spectrometry. Mol Biosyst 2009;5:1298-1302.
  • 332 Harvey DJ, Sobott F, Crispin M, Wrobel A, Bonomelli C, Vasiljevic S, Scanlan CN, Scarff C, Thalassinos K, Scrivens JH. Ion mobility mass spectrometry for extracting spectra of N-glycans directly from incubation mixtures following glycan release: Application to glycans from engineered glycoforms of intact, folded HIV gp120. J Am Soc Mass Spectrom 2011;22:568-581.
  • 333 Harvey DJ, Scarff CA, Crispin M, Scanlan CN, Bonomelli C, Scrivens JH. MALDI-MS/MS with traveling wave ion mobility for the structural analysis of N-linked glycans. J Am Soc Mass Spectrom 2012;23:1955-1966.
  • 334 Harvey DJ, Scarff CA, Edgeworth M, Crispin M, Scanlan CN, Sobott F, Allman S, Baruah K, Pritchard L, Scrivens JH. Travelling wave ion mobility and negative ion fragmentation for the structural determination of N-linked glycans. Electrophoresis 2013;34:2368-2378.
  • 335 Crispin M, Harvey DJ, Bitto D, Halldorsson S, Bonomelli C, Edgeworth M, Scrivens JH, Huiskonen JT, Bowden TA. Uukuniemi phlebovirus assembly and secretion leave a functional imprint on the virion glycome. J Virol 2014;88:10244-10251.
  • 336 Bitto D, Harvey DJ, Halldorsson S, Doores KJ, Huiskonen JT, Bowden TA, Crispin M. Determination of N-linked glycosylation in UUKV glycoproteins by negative ion mass spectrometry and ion mobility. Methods Mol Biol 2015;1331:93-121.
  • 337 Ahn YH, Kim JY, Yoo JS. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods. Mass Spectrom Rev 2015;34:148-165.
  • 338 Goldman R, Sanda M. Targeted methods for quantitative analysis of protein glycosylation. Proteomics Clin Appl 2015;9:17-32.
  • 339 Kang P, Mechref Y, Kyselova Z, Goetz JA, Novotny MV. Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal Chem 2007;79:6064-6073.
  • 340 Atwood JA III, Cheng L, Alvarez-Manilla G, Warren NL, York WS, Orlando R. Quantitation by isobaric labeling: Applications to glycomics. J Proteome Res 2008;7:367-374.
  • 341 Prien JM, Prater BD, Qin Q, Cockrill SL. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics. Anal Chem 2010;82:1498-1508.
  • 342 Ridlova G, Mortimer JC, Maslen SL, Dupree P, Stephens E. Oligosaccharide relative quantitation using isotope tagging and normal-phase liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2008;22:2723-2730.
  • 343 Hashii N, Kawasaki N, Itoh S, Nakajima Y, Kawanishi T, Yamaguchi T. Alteration of N-glycosylation in the kidney in a mouse model of systemic lupus erythematosus: relative quantification of N-glycans using an isotopetagging method. Immunology 2009;126:336-345.
  • 344 Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM. GlycoWorkbench: A tool for the computer-assisted annotation of mass spectra of glycans.

J Proteome Res 2008;7:1650-1659.

  • 345 Cooper CA, Gasteiger E, Packer NH. GlycoMod - A software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 2001;1:340-349.
  • 346 Deshpande N, Jensen PH, Packer NH, Kolarich D. GlycoSpectrumScan: Fishing glycopeptides from MS spectra of protease digests of human colostrum sIgA. J Proteome Res 2010;9:1063-1075.
  • 347 Go EP, Rebecchi KR, Dalpathado DS, Bandu ML, Zhang Y, Desaire H. GlycoPep DB: A tool for glycopeptide analysis using a “Smart Search" Anal Chem 2007;79:1708-1713.
  • 348 Goldberg D, Sutton-Smith M, Paulson J, Dell A. Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra. Proteomics 2005;5:865-875.
  • 349 Aoki K, Yamaguchi A, Ueda N, Akutsu T, Mamitsuka H, Goto S, Kanehisa M. KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Res 2004;32:W267-W272.
  • 350 Hashimoto K, Goto S, Kawano S, Aoki-Kinoshita KF, Ueda N, Hamajima M, Kawasaki T, Kanehisa M. KEGG as a glycome informatics resource. Glycobiology 2006;16:63R-70R.
  • 351 Egorova KS, Toukach PV. Critical analysis of CCSD data quality. J Chem Inf Model 2012;52:2812-2814.
  • 352 Yamada K, Kakehi K. Recent advances in the analysis of carbohydrates for biomedical use. JPharm Biomed Anal 2011;55:702-727.
  • 353 Artemenko NV, McDonald AG, Davey GP, Rudd PM. Databases and tools in glycobiology. Methods Mol Biol 2012;899:325-350.
  • 354 Lutteke T. The use of glycoinformatics in glycochemistry. Beilstein J Org Chem 2012;8:915-929.
  • 355 Mazola Y, Chinea G, Musacchio A. Integrating bioinformatics tools to handle glycosylation. PLoS Comput Biol 2011;7:e1002285.
  • 356 Aoki-Kinoshita KF. Using databases and web resources for glycomics research. Mol Cell Proteomics 2013;12:1036-1045.
  • 357 Hizal DB, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS, Betenbaugh MJ, Zhang H. Glycoproteomic and glycomic databases. Clin Proteomics 2014;11:Article 15.
  • 358 Morelle W, Michalski JC. Analysis of protein glycosylation by mass spectrometry. Nat Protoc 2007;2:1585-1602.
  • 359 Ruhaak LR, Huhn C, Koeleman CAM, Deelder AM, Wuhrer M. Robust and high-throughput sample preparation for (semi-)quantitative analysis of N-glycosylation profiles from plasma samples. Methods Mol Biol 2012;893:371-385.
  • 360 Wang H, Wong C-H, Chin A, Taguchi A, Taylor A, Hanash S, Sekiya S, Takahashi H, Murase M, Kajihara S, Iwamoto S, Tanaka K. Integrated mass spectrometry-based analysis of plasma glycoproteins and their glycan modifications. Nat Protoc 2011;6:253-269.
  • 361 Wuhrer M, Koeleman CAM, Deelder AM, Hokke CH. Normal-phase nanoscale liquid chromatography-mass spectrometry of underivatized oligosaccharides at low-femtomole sensitivity. Anal Chem 2004;76:833-838.
  • 362 Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM. Nano-scale liquid chromatography-mass spectrometry of 2-aminobenzamide-labeled oligosaccharides at low femtomole sensitivity. Int J Mass Spectrom 2004;232:51-57.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel