• 1 Zhan X, Desiderio DM. The human pituitary nitroproteome: detection of nitrotyrosyl-proteins with two-dimensional western blotting, and amino acid sequence determination with mass spectrometry. Biochem Biophys Res Commun 2004;325:1180-1186.
  • 2 Zhan X, Desiderio DM. Nitroproteins from human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal Biochem 2006;354:279-289.
  • 3 Zhan X, Desiderio DM. Mass spectrometric identification of in vivo nitrotyrosine sites in the human pituitary tumor proteome. Methods Mol Biol 2009a;566:137-163.
  • 4 Peinado MA, Hernandez R, Peragon J, Ovelleiro D, Pedrosa JA, Blanco S. Proteomic characterization of nitrated cell targets after hypobaric hypoxia and reoxygenation in rat brain. J Proteomics 2014;109C:309-321.
  • 5 Franco MC, Estevez AG. Tyrosine nitration as mediator of cell death. Cell Mol Life Sci 2014;71:3939-3950.
  • 6 Yeo WS, Kim YJ, Kabir MH, Kang JW, Ahsan-Ul-Bari MD, Kim KP. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases. Mass Spectrom Rev 2015;34:166-183.
  • 7 Abdelmegeed MA, Song BJ. Functional roles of protein nitration in acute and chronic liver diseases. OxidMed Cell Longev 2014;2014:149627.
  • 8 Scaloni A. Mass spectrometry approaches for the molecular characterization of oxidatively/nitrosatively modified proteins. In: Dalle- Donne I, Scaloni A, Butterfield DA, editors. Redox Proteomics: From Protein Modification to Cellular Dysfunction and Diseases. Hoboken, NJ: Wiley; 2006. p 59-100.
  • 9 Yee CS, Seyedsayamdost MR, Chang MC, Nocera DG, Stubbe J. Generation of the R2 subunit of ribonucleotide reductase by intein chemistry: insertion of 3-nitrotyrosine at residue 356 as a probe of the radical initiation process. Biochemistry 2003;42:14541-14552.
  • 10 Ghesquiere B, Goethals M, Van Damme J, Staes A, Timmerman E, Vandekerchhove J, Gevaert K. Improved tandem mass spectrometric characterization of 3-nitrotyrosine sites in peptides. Rapid Commun Mass Spectrom 2006;20:2885-2893.
  • 11 Guo T, Wang X, Li M, Yang H, Li L, Peng F, Zhan X. Identification of glioblastoma phosphotyrosine-containing proteins with two-dimensional western blotting and tandem mass spectrometry. BioMed Res Int 2015;2015:134050.
  • 12 Hunter T. Synthetic peptide substrates for a tyrosine protein kinase. J Biol Chem 1982;257:4843-4848.
  • 13 Cooper JA, Esch FS, Taylor SS, Hunter T. Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinase in vivo and in vitro.

J Biol Chem 1984;259:7835-7841.

  • 14 Patschinsky T, Hunter T, Esch FS, Cooper JA, Sefton BM. Analysis of the sequence of amino acids surrounding sites of tyrosine phosphorylation. Proc Natl Acad Sci U S A 1982;79:973-977.
  • 15 Low IC, Loh T, Huang Y, Virshup DM, Pervaiz S. Ser70 phosphorylation of Bcl-2 by selective tyrosine nitration of PP2A-B565 stabilizes its antiapoptotic activity. Blood 2014;124:2223-2234.
  • 16 Joshi MS, Mihm MJ, Cook AC, Schanbacher BL, Bauer JA. Alterations in connexin 43 during diabetic cardiomyopathy: competition of tyrosine nitration versus phosphorylation. J Diabetes; 2014. DOI: 10.1111/ 1753-0407.12164.
  • 17 Smallwood HS, Lourette NM, Boschek CB, Bigelow DJ, Smith RD, Pasa-Tolic L, Squier TC. Identification of a denitrase activity against calmodulin in activated macrophages using high-field liquid chromatography—FTICR mass spectrometry. Biochemistry 2007;46:10498-10505.
  • 18 Deeb RS, Nuriel T, Cheung C, Summers B, Lamon BD, Gross SS, Hajja DP. Characterization of a cellular denitrase activity that reverses nitration of cyclooxygenase. Am J Physiol Heart Circ Physiol 2013;305:H687-H698.
  • 19 Abello N, Kerstjens HA, Postma DS, Bischoff R. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins.

J Proteome Res 2009;8:3222-3238.

  • 20 Molina-Jijon E, Rodriguez-Munoz R, Namorado Mdel C, Pedraza-Chaverri J, Reyes JL. Oxidative stress induces claudin-2 nitration in experiment type 1 diabetic nephropathy. Free Radic Biol Med 2014;72:162-175.
  • 21 Cabassi A, Binno SM, Tedeschi S, Ruzicka V, Dancelli S, Rocco R, Vicini V, Coghi P, Regolisti G, Montanari A, Fiaccadori E, Govoni P, Piepoli M, de Champlain J. Low serum ferroxidase I activity is associated with mortality in heart failure and related to both peroxynitrite-induced cysteine oxidation and tyrosine nitration of ceruloplasmin. Circ Res 2014;114:1723-1732.
  • 22 DiDonato JA, Aulak K, Huang Y, Wagner M, Gerstenecker G, Topbas C, Gogonea V, DiDonato AJ, Tang WH, Mehl RA, Fox PL, Plow EF, Smith JD, Fisher EA, Hazen SL. Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J Biol Chem 2014;289:10276-10292.
  • 23 Uzasci L, Bianchet MA, Cotter RJ, Nath A. Identification of nitrated immunoglobulin variable regions in the HIV-infected human brain: implications in HIV infection and immune response. J Proteome Res 2014;13:1614-1623.
  • 24 Haddad IY, Pataki G, Hu P, Galliani C, Beckman JS, Matalon S. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J Clin Invest 1994;94:2407-2413.
  • 25 Shigenaga MK, Lee HH, Blunt BC, Christen S, Shigeno ET, Yip H, Ames BN. Inflammation and NO(X)-induced nitration: assay for 3-nitrotyrosine by HPLC with electrochemical detection. Proc Natl Acad Sci U S A 1997;94:3211-3216.
  • 26 Zhan X, Wang X, Desiderio DM. Pituitary adenoma nitroproteomics: current status and perspectives. OxidMed Cell Longev 2013;2013:580710.
  • 27 Zhan X, Desiderio DM. MALDI-induced fragmentation of leucine enkephalin, nitro-Tyr leucine enkephalin, and d(5)-Phe-nitro-Tyr leucine enkephalin. Int J Mass Spectrom 2009;287:77-86.
  • 28 Petersson AS, Steen H, Kalume DE, Caidahl K, Roepstorff P. Investigation of tyrosine nitration in proteins by mass spectrometry. J Mass Spectrom 2001;36:616-625.
  • 29 Sarver A, Scheffler K, Shetlar MD, Gibson BW. Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption/ ionization mass spectrometry. J Am Soc Mass Spectrom 2001;12:439-448.
  • 30 Zhang Q, Qian WJ, Knyushko TV, Clauss TR, Purvine SO, Moore RJ, Sacksteder CA, Chin MH, Smith DJ, Camp DG 2nd, Bigelow DJ, Smith RD.

A method for selective enrichment and analysis of nitrotyrosine-containing peptides in complex proteome samples. J Proteome Res 2007;6:2257-2268.

31 Yeo WS, Lee SJ, Lee JR, Kim KP. Nitrosative protein tyrosine modifications: biochemistry and functional significance. BMB Rep 2008;41:194-203.

  • 32 Lee SJ, Lee JR, Kim YH, et al. Investigation of tyrosine nitration and nitrosylation of angiotensin II and bovine serum albumin with electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 2007;21:2797-2804.
  • 33 Kim JK, Lee JR, Kang JW, Lee SJ, Shin GC, Yeo WS, Kim KH, Park HS, Kim KP. Selective enrichment and mass spectrometric identification of nitrated peptides using fluorinated carbon tags. Anal Chem 2011;83:157-163.
  • 34 Lee JR, Lee SJ, Kim TW, Kim JK, Park HS, Kim DE, Kim KP, Yeo WS.

Chemical approach for specific enrichment and mass analysis of nitrated peptides. Anal Chem 2009;81:6620-6629.

  • 35 Lee HM, Reed J, Greeley GH Jr, Englander EW. Impaired mitochondrial respiration and protein nitration in the rat hippocampus after acute inhalation of combustion smoke. Toxicol Appl Pharmacol 2009;235:208-215.
  • 36 Dekker F, Abello N, Wisastra R, Bischoff R. Enrichment and detection of tyrosine-nitrated proteins. Curr Protoc Protein Sci 2012;Chapter 14: Unit 14.13.
  • 37 Freeney MB, Schoneich C. Proteomic approaches to analyze protein tyrosine nitration. Antioxid Redox Signal 2013;19:1247-1256.
  • 38 Zhan X, Wang X, Desiderio DM. Mass spectrometry analysis of nitrotyrosine- containing proteins. Mass Spectrom Rev 2015;34:423-448.
  • 39 Gusanu M, Petre BA, Przybylski M. Epitope motif of an anti-nitrotyrosine antibody specific for tyrosine-nitrated peptides revealed by a combination of affinity approaches and mass spectrometry. JPept Sci 2011;17:184-191.
  • 40 Sultana R, Reed T, Butterfield DA. Detection of 4-hydroxy-2-nonenal- and 3-nitrotyrosine-modified proteins using a proteomics approach. Methods Mol Biol 2009;519:351-361.
  • 41 Prokai-Tatrai K, Guo J, Prokai L. Selective chemoprecipitation and subsequent release of tagged species for the analysis of nitropeptides by liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 2011;10(8):M110.002923.
  • 42 Abello N, Barroso B, Kerstjens HAM, Postma DS, Bischoff R. Chemical labeling and enrichment of nitrotyrosine-containing peptides. Talanta 2010;80:1503-1512.
  • 43 Tsumoto H, Taguchi R, Kohda K. Efficient identification and quantification of peptides containing nitrotyrosine by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry after derivation. Chem Pharm Bull 2010;58:488-494.
  • 44 Amoresano A, Chiappetta G, Pucci P, D'Ischia M, Marino G. Bidimensional tandem mass spectrometry for selective identification of nitration sites in proteins. Anal Chem 2007;79:2109-2117.
  • 45 Amoresano A, Chiappetta G, Pucci P, Marino G. A rapid and selective mass spectrometric method for the identification of nitrated proteins. Methods Mol Biol 2008;477:15-29.
  • 46 Chiappetta G, Corbo C, Palmese A, Galli F, Piroddi M, Marino G, Amoresano A. Quantitative identification of protein nitration sites. Proteomics 2009;9:1524-1537.
  • 47 Robinson RA, Evans AR. Enhanced sample multiplexing for nitrotyrosine- modified proteins using combined precursor isotopic labeling and isobaric tagging. Anal Chem 2012;84:4677-4686.
  • 48 Ghesquiere B, Colaert N, Helsens K, Dejager L, Vanhaute C, Verleysen K, Kas K, Timmerman E, Goethals M, Libert C, Vandekerckhove J, Gevaert K. In vitro and in vivo protein-bound tyrosine nitration characterized by diagonal chromatography. Mol Cell Proteomics 2009;8:2642-2652.
  • 49 Larsen TR, Bache N, Gramsbergen JB, Roepstorff P. Identification of nitrotyrosine containing peptides using combined fractional diagonal chromatography (COFRADIC) and off-line nano-LC-MALDI. J Am Soc Mass Spectrom 2011;22:989-996.
  • 50 Zhang Y, Yang H, Posch IU. Analysis of nitrated proteins and tryptic peptides by HPLC-chip-MS/MS: site-specific quantification, nitration degree, and reactivity of tyrosine residues. Anal Bioanal Chem 2011;399:459-471.
  • 51 Zhan X, Desiderio DM. The use of variations in proteomes to predict, prevent, and personalize treatment for clinically nonfunctional pituitary adenomas. EPMA J 2010b;1:39-459.
  • 52 Zhan X, Desiderio DM. Nitroproteins identified in human ex-smoker bronchoalveolar lavage fluid. AgingDis 2011;2:00-115.
  • 53 Zhan X, Desiderio DM. Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics 2010a;3:13.
  • 54 Seeley KW, Stevens SM Jr. Investigation of local primary structure effects on peroxynitrite-mediated tyrosine nitration using targeted mass spectrometry.

J Proteomics 2012;75:1691-1700.

  • 55 Palamalai V, Miyagi M. Mechanism of glyceraldehyde-3-phosphate dehydrogenase inactivation by tyrosine nitration. Protein Sci 2010;19:255-262.
  • 56 Petre BA, Youhnovski N, Lukkari J, Weber R, Przybylski M. Structural characterization of tyrosine-nitrated peptides by ultraviolet and infrared matrix- assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Eur J Mass Spectrom (Chichester, Eng) 2005;11:513-518.
  • 57 Jones AW, Cooper HJ. Probing the mechanisms of electron capture dissociation mass spectrometry with nitrated peptides. Phys Chem Chem Phys 2010;12:13394-13399.
  • 58 Jones AW, Mikhailov VA, Iniesta J, Cooper HJ. Electron capture dissociation mass spectrometry of tyrosine nitrated peptides. J Am Soc Mass Spectrom 2010;21:268-277.
  • 59 Cook SL, Jackson GP. Characterization of tyrosine nitration and cysteine nitrosylation modifications by metastable atom-activation dissociation mass spectrometry. J Am Soc Mass Spectrom 2011;22:221-232.
  • 60 Turko IV, Murad F. Mapping sites of tyrosine nitration by matrix-assisted laser desorption/ionization mass spectrometry. Methods Enzymol 2005;396:266-275.
  • 61 Sheeley SA, Rubakhin SS, Sweedler JV. The detection of nitrated tyrosine in neuropeptides: a MALDI matrix-dependent response. Anal Bioanal Chem 2005;382:22-27.
  • 62 Li B, Held JM, Schilling B, Danielson SR, Gibson BW. Confident identification of 3-nitrotyrosine modifications in mass spectral data across multiple mass spectrometry platforms. JProteomics 2011;74:2510-2521.
  • 63 Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G, Colombo R, Rossi R, Milzani A. Proteins as biomarkers of oxidative/ nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 2005;24:55-99.
  • 64 Dalle-Donne I, Scaloni A, Butterfield DA. Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2006.
  • 65 Ghosh S, Janocha AJ, Aronica MA, Swaidani S, Comhair SAA, Xu W, Zheng L, Kaveti S, Kinter M, Hazen SL, Erzurum SC. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J Immunol 2006;176:5587-5597.
  • 66 Lanone S, Manivet P, Callebert J, Launay JM, Payen D, Aubier M, Boczkowski J, Mebazaa A. Inducible nitric oxide synthase (NOS2) expressed in septic patients is nitrated on selected tyrosine residues: implications for enzymic activity. Biochem J 2002;366:399-404.
  • 67 Chatterjee S, Lardinois O, Bonini MG, Bhattacharjee S, Stadler K, Corbett J, Deterding LJ, Tomer KB, Kadiiska M, Mason RP. Site-specific carboxypeptidase B1 tyrosine nitration and pathophysiological implications following its physical association with nitric oxide synthase-3 in experimental sepsis. J Immunol 2009;183:4055-4066.
  • 68 Dhiman M, Nakayasu ES, Madaiah YH, Reynolds BK, Wen JJ, Almeida IC, Garg NJ. Enhanced nitrosative stress during Trypanosoma cruzi infection causes nitrotyrosine modification of host proteins: implications in Chagas' disease. Am J Pathol 2008;173:728-740.
  • 69 Sharov VS, Galeva NA, Kanski J, Williams TD, Schoneich C. Age-associated tyrosine nitration of rat skeletal muscle glycogen phosphorylase b: characterization by HPLC-nanoelectrospray-tandem mass spectrometry.

Exp Gerontol 2006;41:407-416.

  • 70 Kanski J, Hong SJ, Schoneich C. Proteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometry. J Biol Chem 2005;280:24261-24266.
  • 71 Marshall A, Lutfeali R, Raval A, Chakravarti DN, Chakravarti B. Differential hepatic protein tyrosine nitration of mouse due to aging-effect on mitochondrial energy metabolism, quality control machinery of the endoplasmic reticulum and metabolism of drugs. Biochem Biophys Res Commun 2013;430:231-235.
  • 72 Kanski J, Behring A, Pelling J, Schoneich C. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging.

Am J Physiol Heart Circ Physiol 2005;288:H371-H381.

  • 73 Nakagawa H, Komai N, Takusagawa M, Miura Y, Toda T, Miyata N, Ozawa T, Ikota N. Nitration of specific tyrosine residues of cytochrome C is associated with caspase-cascade inactivation. Biol Pharm Bull 2007;30:15-20.
  • 74 Fiorce G, Di Cristo C, Monti G, Amoresano A, Columbano L, Pucci P, Cioffi FA, Cosmo AD, Palumbo A, d'Ischia M. Tubulin nitration in human gliomas. Neurosci Lett 2006;394:57-62.
  • 75 Zhan X, Desiderio DM. Linear ion-trap mass spectrometric characterization of human pituitary nitrotyrosine containing proteins. Int J Mass Spectrom 2007;259:96-104.
  • 76 Sacksteder CA, Qian WJ, Knyushko TV, Wang HW, Chin MH, Lacan G, Melega WP, Camp DG II, Smith RD, Smith DJ, Squier TC, Bigelow DJ. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry 2006;45:8009-8022.
  • 77 Zhang X, Monroe ME, Chen B, Chin MH, Heibeck TH, Schepmoes AA, Yang F, Petritis BO, Camp DG 2nd, Pounds JG, Jacobs JM, Smith DJ, Bigelow DJ, Smith RD, Qian WJ. Endogenous 3,4-dihydroxyphenylalanine and dopaquinone modifications on protein tyrosine: links to mitochondrially derived oxidative stress via hydroxyl radical. Mol Cell Proteomics 2010;9:1199-1208.
  • 78 Danielson SR, Held JM, Schilling B, Oo M, Gibson BW, Andersen JK. Preferentially increased nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson's disease. Anal Chem 2009;81:7823-7828.
  • 79 Casoni F, Basso M, Massignan T, Gianazza E, Cheroni C, Salmona M,

Bendotti C, Bonetto V. Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J Biol Chem 2005;280:16295-16304.

  • 80 Yoon SW, Kang S, Ryu SE, Poo H. Identification of tyrosine-nitrated proteins in HT22 hippocampal cells during glutamate-induced oxidative stress. Cell Prolif 2010;43:584-593.
  • 81 Liu B, Tewari AK, Zhang L, Green-Church KB, Zweier JL, Chen YR, He G. Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target. Biochem Biophys Acta 2009;1974:476-485.
  • 82 Chen CL, Chen J, Rawale S, Varadharaj S, Kaumaya PPT, Zweier JL, Chen YR. Protein tyrosine nitration of the Flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium.

J Biol Chem 2008;283:27991-28003.

83 Ai L, Rouhanizadeh M, Wu JC, Takabe W, Yu H, Alavi M, Chu Y, Miller J, Heistad DD, Hsiai TK. Shear stress influences spatial variations in vascular Mn-SOD expression. Am J Physiol Cell Physiol 2008;294:C1576-C1585.

  • 84 Justilien V, Pang JJ, Renganathan K, Zhan X, Crabb JW, Kim SR, Sparrow JR, Hauswirth WW, Lewin AS. SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci 2007;48:4407-4420.
  • 85 Murdaugh LS, Wang Z, Del Priore LV, Dillon J, Gaillard ER. Age-related accumulation of 3-nitrotyrosine and nitro-A2E in human Bruch's membrane. Exp Eye Res 2010;90:564-571.
  • 86 Palamalai V, Darrow RM, Organisciak DT, Miyagi M. Light-induced changes in protein nitration in photoreceptor rod outer segments. Mol Vis 2006;12:1543-1551.
  • 87 Kato Y, Dozaki N, Nakamura T, Kitamoto N, Yoshida A, Naito M, Kitamura M, Osawa T. Quantification of modified tyrosines in healthy and diabetic human urine using liquid chromatography/tandem mass spectrometry. J Clin Biochem Nutr 2009;44:67-78.
  • 88 Piroddi M, Palmese A, Pilolli F, Amoresano A, Pucci P, Ronco C, Galli F. Plasma nitroproteome of kidney disease patients. Amino Acids 2011;40:653-667.
  • 89 Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Lopez-Jaramillo J, Luque F, Palma JM, Pedrajas JR, Begara-Morales JC, Sanchez-Calvo B, Gomez-Rodriguez MV, Corpas FJ, Barroso JB. Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J Exp Bot 2009;60:4221-4234.
  • 90 Aslan M, Ryan TM, Townes TM, Coward L, Kirk MC, Barnes S, Alexander CB, Rosenfeld SS, Freeman BA. Nitric oxide-dependent generation of reactive species in sickle cell disease. Actin tyrosine induces defective cytoskeletal polymerization. J Biol Chem 2003;278:4194-4204.
  • 91 Reed TT, Owen J, Pierce WM, Sebastian A, Sullivan PG, Butterfield DA. Proteomic identification of nitrated brain proteins in traumatic brain-injured rats treated postinjury with gamma-glutamylcysteine ethylester: insights into the role of elevation of glutathione as a potential therapeutic strategy for traumatic brain injury. J Neurosci Res 2009;87:408-417.
  • 92 Ulrich M, Petre A, Youhnovski N, Promm F, Schirle M, Schumm M, Pero RS, Doyle A, Checkel J, Kita H, Thiyagarajan N, Acharya KR, Schmid- Grendelmeier P, Simon HU, Schwarz H, Tsutsui M, Shimokawa H, Bellon G, Lee JJ, Przybylski M, Doring G. Post-translational tyrosine nitration of eosinophil granule toxins mediated by eosinophil peroxidase. J Biol Chem 2008;283:28629-28640.
  • 93 Webster RP, Brockman D, Myatt L. Nitration of p38 MAPK in the placenta: association of nitration with reduced catalytic activity of p38 MAPK in pre-eclampsia. Mol Hum Reprod 2006;12:677-685.
  • 94 Casanovas A, Carrascal M, Abian J, Lopez-Tejero MD, Llobera M. Lipoprotein lipase is nitrated in vivo after lipopolysaccharide challenge. Free Radic Biol Med 2009;47:1553-1560.

95 Hamilton RT, Asatryan L, Nilsen JT, Isas JM, Gallaher TK, Sawamura T,

Hsiai TK. LDL protein nitration: implication for LDL protein unfolding. Arch Biochem Biophys 2008;479:1-14.

  • 96 Sharov VS, Galeva NA, Dremina ES, Williams TD, Schoneich C. Inactivation of rabbit muscle glycogen phosphorylase b by peroxynitrite revisited: does the nitration of Tyr613 in the allosteric inhibition site control enzymatic function? Arch Biochem Biophys 2009;484:155-166.
  • 97 Zhu JH, Zhang X, Roneker CA, McClung JP, Zhang S, Thannhauser TW, Ripoll DR, Sun Q, Lei XG. Role of copper, zinc-superoxide dismutase in catalyzing nitrotyrosine formation in murine liver. Free Radic Biol Med 2008;45:611-618.
  • 98 Chen HJ, Chen YC. Reactive nitrogen oxide species-induced posttranslational modifications in human hemoglobin and the association with cigarette smoking. Anal Chem 2012;84:7881-7890.
  • 99 Sekar Y, Moon TC, Slupsky CM, Befus AD. Protein tyrosine nitration of aldolase in mast cells: a plausible pathway in nitric oxide-mediated regulation of mast cell function. JImmunol 2010;185:578-587.
  • 100 Ohama T, Brautigan DL. Endotoxin conditioning induces VCP/p97- mediated and inducible nitric-oxide synthase-dependent Tyr284 nitration in protein phosphatase 2A. J Biol Chem 2010;285:8711-8718.
  • 101 Redondo-Horcajo M, Romero N, Martinez-Acedo P, Martinez-Ruiz A, Quijano C, Louren^o CF, Movilla N, Enriquez JA, Rodriguez-Pascual F, Rial E, Radi R, Vazquez J, Lamas S. Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide. Cardiovasc Res 2010;87:356-365.
  • 102 Bigelow DJ, Qian WJ. Quantitative proteome mapping of nitrotyrosines. Methods Enzymol 2008;440:191-205.
  • 103 Tao RR, Huang JY, Shao XJ, Ye WF, Tian Y, Liao MH, Fukunaga K, Lou YJ, Han F, Lu YM. Ischemic injury promotes Keap1 nitration and disturbance of antioxidative responses in endothelial cells: a potential vasoprotective effect of melatonin. J. Pineal. Res. 2013;54:271-281.
  • 104 Lu N, Zhang Y, Li H, Gao Z. Oxidative and nitrative modifications of alpha-enolase in cardiac proteins from diabetic rats. Free Radic Biol Med 2010;48:873-881.
  • 105 Safinowski M, Wilhelm B, Reimer T, Weise A, Thome N, Hanel H, Forst T, Pfutzner A. Determination of nitrotyrosine concentrations in plasma samples of diabetes mellitus patients by four different immunoassays leads to contradictive results and disqualifies the majority of the tests. Clin Chem Lab Med 2009;47:483-488.
  • 106 Cecconi D, Orzetti S, Vandelle E, Rinalducci S, Zolla L, Delledonne M. Protein nitration during defense response in Arabidopsis thaliana. Electrophoresis 2009;30:2460-2468.
  • 107 Hui Y, Wong M, Zhao SS, Love JA, Ansley DM, Chen DD. A simple and robust LC-MS/MS method for quantification of free 3-nitrotyrosine in human plasma from patients receiving on-pump CABG surgery. Electrophoresis 2012;33:697-704.
  • 108 Sokolovsky M, Riordan JF, Vallee BL. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry 1966;5:3582-3589.
  • 109 Fujigaki H, Saito K, Lin F, Fujigaki S, Takahashi K, Martin BM, Chen CY, Masuda J, Kowalak J, Takikawa O, Seishima M, Markey SP. Nitration and inactivation of IDO by peroxynitrite. J Immunol 2006;176:372-379.
  • 110 Sokolovsky M, Riordan JF, Vallee BL. Conversion of 3-nitrotyrosine to 3-aminotyrosine in peptides and proteins. Biochem Biophys Res Commun 1967;27:20-25.
  • 111 Ghesquiere B, Helsens K, Vandekerckhove J, Gevaert K. A stringent approach to improve the quality of nitrotyrosine peptide identifications. Proteomics 2011;11:1094-1098.
  • 112 Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA 2001;98:12056-12061.
  • 113 Miyagi M, Sakaguchi H, Darrow RM, Yan L, West KA, Aulak KS, Stuehr DJ, Hollyfield JG, Organisciak DT, Crabb JW. Evidence that light modulates protein nitration in rat retina. Mol Cell Proteomics 2002;1:293-303.
  • 114 Butt YK, Lo SC. Detecting nitrated proteins by proteomic technologies. Methods Enzymol 2008;440:17-31.
  • 115 Petre BA, Ulrich M, Stumbaum M, Bernevic B, Moise A, Doring G, Przybylski M. When is mass spectrometry combined with affinity approaches essential? A case study of tyrosine nitration in proteins. J Am Soc Mass Spectrom 2012;23:1831-1840.
  • 116 Dremina ES, Li X, Galeva NA, Sharov VS, Stobaugh JF, Schoneich CA. Methodology for simultaneous fluorogenic derivatizaiton and boronate affinity enrichment of 3-nirotyrosine containing peptides. Anal Biochem 2011;418:184-196.
  • 117 Mani AR, Moore KP. Dynamic assessment of nitration reactions in vivo. Methods Enzymol 2005;396:151-159.
  • 118 Lin HL, Myshkin E, Waskell L, Hollenberg PF. Peroxynitrite inactivation of human cytochrome P450 2B6 and 2E1: heme modification and site-specific nitrotyrosine formation. Chem Res Toxicol 2007;20:1612-1622.
  • 119 Lin HL, Kenaan C, Zhang H, Hollenberg PF. Reaction of human cytochrome P450 3A4 with peroxynitrite: nitrotyrosine formation on the proximal side impairs its interaction with NADPH-cytochrome P450 reductase. Chem Res Toxicol 2012;25:2642-2653.
  • 120 Yamakura F, Kawasaki H. Post-translational modifications of superoxide dismutase. Biochim Biophys Acta-Proteins Proteom 2010;1804:318-325.
  • 121 Kanski J, Schoneich C. Protein nitration in biological aging: proteomic and tandem mass spectrometric characterization of nitrated sites. Methods Enzymol 2005;396:160-171.
  • 122 Spickett CM, Pitt AR. Protein oxidation: role in signaling and detection by mass spectrometry. Amino Acids 2012;42:5-21.
  • 123 Tsikas D. Analytical methods for 3-nitrotyrosine quantification in biological samples: the unique role of tandem mass spectrometry. Amino Acids 2012;42:45-63.
  • 124 Cheng S, Lian B, Liang J, Shi T, Xie L, Zhao YL. Site selectivity for protein tyrosine nitration: insights from features of structure and topological network. Mol Biosyst 2013;9:2860-2868.
  • 125 Tsikas D, Duncan MW. Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. Mass Spectrom Rev 2014;33:237-276.
< Prev   CONTENTS   Source   Next >