Menu
Home
Log in / Register
 
Home arrow Health arrow Analysis of Protein Post-Translational Modifications by Mass Spectrometry
Source

References

  • 1 Rabbani N, Thornalley PJ. Glycation research in amino acids: A place to call home. Amino Acids 2012;42:1087-1096.
  • 2 Thornalley PJ, Rabbani N. Detection of oxidized and glycated proteins in clinical samples using mass spectrometry - A user's perspective. Biochim Biophys Acta 2014;1840:818-829.
  • 3 Rabbani N, Thornalley PJ. Dicarbonyl proteome and genome damage in metabolic and vascular disease. Biochem Soc Trans 2014;42:425-432.
  • 4 Goldstein DE, Malone JI, Little RR, Nathan D, Lorenz RA, Petersen CM. Tests for glycaemia in diabetes. Diabetes Care 1995;18:896-909.
  • 5 American-Diabetes-Association. Classification and diagnosis of diabetes. Diabetes Care 2015;38:S8-S16.
  • 6 Rabbani N, Thornalley PJ. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun 2015;458:221-226.
  • 7 Ahmed N, Thornalley PJ. Advanced glycation endproducts: What is their relevance to diabetic complications? Diabetes Obes Metab 2007;9:233-245.
  • 8 Agalou S, Ahmed N, Babaei-Jadidi R, Dawnay A, Thornalley PJ. Profound mishandling of protein glycation degradation products in uremia and dialysis. J Am Soc Nephrol 2005;16:1471-1485.
  • 9 Genuth S, Sun W, Cleary P, Gao X, Sell DR, Lachin J, et al. Skin advanced glycation endproducts (AGEs) glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type I diabetes. Diabetes 2015;64:266-278.
  • 10 Hanssen NMJ, Beulens JWJ, van Dieren S, Scheijen JLJM, van der A DL, Spijkerman AMW, et al. Plasma advanced glycation end products are associated with incident cardiovascular events in individuals with type 2 diabetes: A case-cohort study with a median follow-up of 10 years (EPIC-NL). Diabetes 2015;64:257-265.
  • 11 Rabbani N, Godfrey L, Xue M, Shaheen F, Geoffrion M, Milne R, et al. Conversion of low density lipoprotein to the pro-atherogenic form by methylglyoxal with increased arterial proteoglycan binding and aortal retention. Diabetes 2011;60:1973-1980.
  • 12 Godfrey L, Yamada-Fowler N, Smith JA, Thornalley PJ, Rabbani N. Arginine- directed glycation and decreased HDL plasma concentration and functionality. Nutr Diabetes 2014;4:e134.
  • 13 Ahmed N, Ahmed U, Thornalley PJ, Hager K, Fleischer GA, Munch G. Protein glycation, oxidation and nitration marker residues and free adducts of cerebrospinal fluid in Alzheimer's disease and link to cognitive impairment.

JNeurochem 2004;92:255-263.

  • 14 Ahmed N, Thornalley PJ, Luthen R, Haussinger D, Sebekova K, Schinzel R, et al. Processing of protein glycation, oxidation and nitrosation adducts in the liver and the effect of cirrhosis. J Hepatol 2004;41:913-919.
  • 15 Kurz A, Rabbani N, Walter M, Bonin M, Thornalley PJ, Auburger G, et al. Alpha-synuclein deficiency leads to increased glyoxalase I expression and glycation stress. Cell Mol Life Sci 2011;68:721-733.
  • 16 Dammann P, Sell DR, Begall S, Strauch C, Monnier VM. Advanced glycation end-products as markers of aging and longevity in the long-lived Ansell's mole-rat (Fukomys anselli). J Gerontol Ser A Biol Sci Med Sci 2012;67:573-583.
  • 17 Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D, et al. Glycation- altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell 2012;11:1-13.
  • 18 Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 2003;375:581-592.
  • 19 Ahmed N, Argirov OK, Minhas HS, Cordeiro CA, Thornalley PJ. Assay of advanced glycation endproducts (AGEs): Surveying AGEs by chromatographic assay with derivatisation by aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Ne-carboxymethyl-lysine- and Ne-(1-carboxyethyl) lysine-modified albumin. Biochem J 2002;364:1-14.
  • 20 Rabbani N, Thornalley PJ. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 2012;42:1133-1142.
  • 21 Calvo C, Ulloa N, Campos M, Verdugo C, Ayrault-Jarrier M. The preferential site of non-enzymatic glycation of human apolipoprotein A-I in vivo. Clin Chim Acta 1993;217:193-198.
  • 22 Shuvaev VV, Fujii J, Kawasaki Y, Itoh H, Hamaoka R, Barbier A, et al.

Glycation of apolipoprotein E impairs its binding to heparin: Identification of the major glycation site. Biochim Biophys Acta 1999;1454:296-308.

  • 23 Fujita T, Suzuki K, Tada T, Yoshihara Y, Hamaoka R, Uchida K, et al. Human erythrocyte bisphosphoglycerate mutase: Inactivation by glycation in vivo and in vitro. J Biochem 1998;124:1237-1244.
  • 24 Acosta J, Hettinga J, Fluckiger R, Krumrei N, Goldfine A, Angarita L, et al. Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci U S A 2000;97:5450-5455.
  • 25 Niemann MA, Bhown AS, Miller EJ. The principal site of glycation of human complement factor B. Biochemical J 1991;274:473-480.
  • 26 O'Harte FPM, Abdel-Wahab YHA, Conlon JM, Flatt PR. Amino terminal glycation of gastric inhibitory polypeptide enhances its insulinotropic action on clonal pancreatic B-cells. Biochim Biophys Acta 1998;1425:319-327.
  • 27 O'Harte FPM, Abdel-Wahab YHA, Conlon JM, Flatt PR. Glycation of glucagon-like peptide-1(7-36)amide: Characterization and impaired action on rat insulin secreting cells. Diabetologia 1998;41:1187-1193.
  • 28 Zhang X, Medzihradszky KF, Cunningham J, Lee PDK, Rognerud CL, Ou CN, et al. Characterization of glycated hemoglobin in diabetic patients: Usefulness of electrospray mass spectrometry in monitoring the extent and distribution of glycation. J Chromatogr B 2001;759:1-15.
  • 29 Coletta M, Amiconi G, Bellelli A, Bertollini A, Carsky J, Castagnola M, et al. Alteration of T-state binding properties of naturally glycated hemoglobin, HbA1c. J Mol Biol 1988;203:233-239.
  • 30 Wang SH, Wang TF, Wu CH, Chen SH. In-depth comparative characterization of hemoglobin glycation in normal and diabetic bloods by LC-MSMS. J Am Soc Mass Spectrom 2014;25:758-766.
  • 31 O'Harte FPM, Hojrup P, Barnett CR, Flatt PR. Identification of the site of glycation of human insulin. Peptides 1996;17:1323-1330.
  • 32 Miyata T, Inagi R, Wada Y, Ueda Y, Iida Y, Takahashi M, et al. Glycation of human a 2 -microglobulin in patients with hemodialysis-associated amyloidosis: Identification of the glycated sites. Biochemistry 1994;33:12215-12221.
  • 33 Barnaby OS, Cerny RL, Clarke W, Hage DS. Quantitative analysis of glycation patterns in human serum albumin using 16O/18O-labeling and MALDI-TOF MS. Clin Chim Acta 2011;412:1606-1615.
  • 34 Rabbani N, AntonySunil A, Rossing K, Rossing P, Tarnow L, Parving HH, et al. Effect of Irbesartan treatment on plasma and urinary protein glycation, oxidation and nitration markers in patients with type 2 diabetes and microalbuminuria. Amino Acids 2011;42:1627-1639.
  • 35 Arai K, Maguchi S, Fujii S, Ishibashi H, Oikawa K, Taniguchi N. Glycation and inactivation of human Cu-Zn-superoxide dismutase - identification of the in vitro glycated sites. JBiol Chem 1987;262:16969-16972.
  • 36 Abraham EC, Cherian M, Smith JB. Site selectivity in the glycation of aA- crystallin and aB-crystallins by glucose. Biochem Biophys Res Commun 1994;201:1451-1456.
  • 37 Casey EB, Zhao HR, Abraham EC. Role of glycine 1 and lysine 2 in the glycation of bovine g B-crystallin. J Biol Chem 1995;270:20781-20786.
  • 38 Baldwin JS, Lee L, Leung TK, Muruganandam A, Mutus B. Identification of the site of nonenzymatic glycation of glutathione-peroxidase - rationalization of the glycation-related catalytic alterations on the basis of 3-dimensional protein-structure. Biochim Biophys Acta 1995;1247:60-64.
  • 39 Guedes S, Vitorino R, Domingues MRM, Amado F, Domingues P. Mass spectrometry characterization of the glycation sites of bovine insulin by tandem mass spectrometry. J Am Soc Mass Spectrom 2009;20:1319-1326.
  • 40 SwamyMruthinti S, Schey KL. Mass spectroscopic identification of in vitro glycated sites of MIP. Curr Eye Res 1997;16:936-941.
  • 41 Watkins NG, Thorpe SR, Baynes JW. Glycation of amino groups in protein. (Studies on the specificity of modification of RNase by glucose). J Biol Chem 1985;260:10629-10636.
  • 42 Frolov A, Hoffmann P, Hoffmann R. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry. J Mass Spectrom 2006;41:1459-1469.
  • 43 Reiser KM, Amigable M, Last JA. Nonenzymatic glycation of type I collagen (the effects of aging on preferential glycation sites. J Biol Chem 1992;267:24207-24216.
  • 44 Takahashi M, Lu Y-b, Myint T, Fujii J, Wad aY, Taniguchi N. In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: Identification of glycation sites. Biochemistry 1995;34:1433-1438.
  • 45 Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 1999;344:109-116.
  • 46 Smith PR, Thornalley PJ. Influence of pH and phosphate ions on the kinetics of enolisation and degradation of fructosamines. Studies with the model fructosamine, Ne-1-deoxy-D-fructos-1-yl hippuryllysine. Biochem Int 1992;28:429-439.
  • 47 Gallet X, Charloteaux B, Thomas A, Braseur R. A fast method to predict protein interaction sites from sequences. J Mol Biol 2000;302:917-926.
  • 48 Veiga-Da-Cunha M, Jacquemin P, Delpierre G, Godfraind C, Theate I, Vertommen D, et al. Increased protein glycation in fructosamine 3-kinase- deficient mice. Biochem J 2006;399:257-264.
  • 49 Wells-Knecht MC, Thorpe SR, Baynes JW. Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry 1995;34:15134-15141.
  • 50 Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW. The myeloperoxidase system of human phagocytes generates Ne-(carboxymethyl) lysine on proteins: A mechanism for producing advanced glycation end products at sites of inflammation. J Clin Invest 1999;104:103-113.
  • 51 Ahmed N, Thornalley PJ, Dawczynski J, Franke S, Strobel J, Stein G, et al. Methylglyoxal-derived hydroimidazolone advanced glycation endproducts of human lens proteins. Invest Ophthalmol Visual Sci 2003;44:5287-5292.
  • 52 Lo TWC, Selwood T, Thornalley PJ. Reaction of methylglyoxal with aminoguanidine under physiological conditions and prevention of methylglyoxal binding to plasma proteins. Biochem Pharmacol 1994;48:1865-1870.
  • 53 Ahmed N, Thornalley PJ. Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatisation with aminoquinolyl- N-hydroxysuccinimidyl-carbamate and intrinsic fluorescence. Biochem J 2002;364:15-24.
  • 54 Hager-Braun C, Tomer KB. Characterization of the tertiary structure of soluble CD4 bound to glycosylated full-length HIVgp120 by chemical modification of arginine residues and mass spectrometric analysis. Biochemistry 2002;41:1759-1766.
  • 55 Dobler D, Ahmed N, Song LJ, Eboigbodin KE, Thornalley PJ. Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes 2006;55:1961-1969.
  • 56 Pedchenko VK, Chetyrkin SV, Chuang P, Ham AJ, Saleem MA, Mathieson PW, et al. Mechanism of perturbation of integrin-mediated cell-matrix interactions by reactive carbonyl compounds and its implication for pathogenesis of diabetic nephropathy. Diabetes 2005;54:2952-2960.
  • 57 Gangadhariah MH, Wang BL, Linetsky M, Henning C, Spanneberg R, Glomb MA, et al. Hydroimidazolone modification of human alpha A-crystallin: Effect on the chaperone function and protein refolding ability. Biochim Biophys Acta 2010;1802:432-441.
  • 58 Kiselar JG, Wang X, Dubyak GR, El Sanadi C, Ghosh SK, Lundberg K, et al. Modification of p-defensin-2 by dicarbonyls methylglyoxal and glyoxal inhibits antibacterial and chemotactic function in vitro. PLoS One 2015;10:e0130533.
  • 59 Lund T, Svindland A, Pepaj M, Jensen AB, Berg JP, Kilhovd B, et al. Fibrin(ogen) may be an important target for methylglyoxal-derived AGE modification in elastic arteries of humans. Diab Vasc Dis Res 2011;8:284-294.
  • 60 Oya-Ito T, Naito Y, Takagi T, Handa O, Matsui H, Yamada M, et al. Heat- shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer. Biochim Biophys Acta 2011;1812:769-781.
  • 61 Ahmed N, Babaei-Jadidi R, Howell SK, Beisswenger PJ, Thornalley PJ. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia 2005;48:1590-1603.
  • 62 Chen Y, Ahmed N, Thornalley PJ. Peptide mapping of human hemoglobin modified minimally by methylglyoxal in vitro. Ann N Y Acad Sci 2005;1043:905.
  • 63 Gao Y, Wang Y. Site-selective modifications of arginine residues in human hemoglobin induced by methylglyoxal. Biochemistry 2006;45:15654-15660.
  • 64 Thangarajah H, Yao DC, Chang EI, Shi YB, Jazayeri L, Vial IN, et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A 2009;106:13505-13510.
  • 65 Akinsiku OT, Yu ET, Fabris D. Mass spectrometric investigation of protein alkylation by the RNA footprinting probe kethoxal. J Mass Spectrom 2005;40:1372-1381.
  • 66 Carven GJ, Stern LJ. Probing the ligand-induced conformational change in HLA-DR1 by selective chemical modification and mass spectrometric mapping. Biochemistry 2005;44:13625-13637.
  • 67 Oliveira L, Lages A, Gomes R, Neves H, Familia C, Coelho A, et al. Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMCBiochem 2011;12:41.
  • 68 Chumsae C, Gifford K, Lian W, Liu H, Radziejewski CH, Zhou ZS. Arginine modifications by methylglyoxal: Discovery in a recombinant monoclonal antibody and contribution to acidic species. Anal Chem 2013;85:11401-11409.
  • 69 Kinsky, O.R., Dicarbonyl protein adduction: Plasminogen as a target and metformin as a scavenging therapeutic in type 2 diabetes. PhD thesis. University of Arizona, Tucson, USA (2014)
  • 70 Queisser MA, Yao D, Geisler S, Hammes HP, Lochnit G, Schleicher ED, et al. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 2010;59:670-678.
  • 71 Brock JWC, Cotham WE, Thorpe SR, Baynes JW, Ames JM. Detection and identification of arginine modifications on methylglyoxal-modified ribonuclease by mass spectrometric analysis. J Mass Spectrom 2007;42:89-100.
  • 72 Cotham WE, Metz TO, Ferguson PL, Brock JWC, Hinton DJS, Thorpe SR,

et al. Proteomic analysis of arginine adducts on glyoxal-modified ribonuclease. Mol Cell Proteomics 2004;3:1145-1153.

  • 73 Calvete JJ, Campanero-Rhodes MA, Raida M, Sanz L. Characterisation of the conformational and quaternary structure-dependent heparin-binding region of bovine seminal plasma protein PDC-109. FEBS Lett 1999;444:260-264.
  • 74 Ahmed N, Dobler D, Dean M, Thornalley PJ. Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J .Biol Chem 2005;280:5724-5732.
  • 75 Kimzey MJ, Yassine HN, Riepel BM, Tsaprailis G, Monks TJ, Lau SS. New site(s) of methylglyoxal-modified human serum albumin, identified by multiple reaction monitoring, alter warfarin binding and prostaglandin metabolism. Chem Biol Interact 2011;192:122-128.
  • 76 Wood TD, Guan Z, Borders CL, Chen LH, Kenyon GL, McLafferty FW. Creatine kinase: Essential arginine residues at the nucleotide binding site identified by chemical modification and high-resolution tandem mass spectrometry. Proc Natl Acad Sci U S A 1998;95:3362-3365.
  • 77 Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, et al. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. JBiol Chem 2007;282:31038-31045.
  • 78 Suckau D, Mak M, Przybylski M. Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc Natl Acad Sci U S A 1992;89:5630-5634.
  • 79 Krell T, Pitt AR, Coggins JR. The use of electrospray mass spectrometry to identify an essential arginine residue in type II dehydroquinases. FEBS Lett 1995;360:93-96.
  • 80 Wu X, Chen SG, Petrash JM, Monnier VM. Alteration of substrate selectivity through mutation of two arginine residues in the binding site of amadoriase II from Aspergillus sp. Biochemistry 2002;41:4453-4458.
  • 81 Schepens I, Ruelland E, Miginiac-Maslow M, Le Marechal P, Decottignies P. The role of active site arginines of sorghum NADP-malate dehydrogenase in thioredoxin-dependent activation and activity. J Biol Chem 2000;275:35792-35798.
  • 82 Iacob RE, Keck Z, Olson O, Foung SKH, Tomer KB. Structural elucidation of critical residues involved in binding of human monoclonal antibodies to hepatitis C virus E2 envelope glycoprotein. Biochim Biophys Acta 2008;1784:530-542.
  • 83 Rabbani N, Shaheen F, Anwar A, Masania J, Thornalley PJ. Assay of methylglyoxal-derived protein and nucleotide AGEs. Biochem Soc Trans 2014;42:511-517.
  • 84 Roberts NB, Amara AB, Morris M, Green BN. Long-term evaluation of electrospray ionization mass spectrometric analysis of glycated hemoglobin. Clin Chem 2001;47:316-321.
  • 85 Thornalley PJ, Argirova M, Ahmed N, Mann VM, Argirov OK, Dawnay A. Mass spectrometric monitoring of albumin in uraemia. Kidney Int 2000;58:2228-2234.
  • 86 Jeric I, Versluis C, Horvat S, Heck AJR. Tracing glycoprotein structures: Electrospray ionization tandem mass spectrometric analysis of sugar-peptide adducts. J Mass Spectrom 2002;37:803-811.
  • 87 Horvat S, Jakas A. Peptide and amino acid glycation: New insights into the Maillard reaction. J Pept Sci 2004;10:119-137.
  • 88 Mennella C, Visciano M, Napolitano A, Del Castillo MD, Fogliano V. Glycation of lysine-containing dipeptides. J Pept Sci 2006;12:291-296.
  • 89 Zhang QB, Frolov A, Tang N, Hoffmann R, van de Goor T, Metz TO, et al. Application of electron transfer dissociation mass spectrometry in analyses of non-enzymatically glycated peptides. Rapid Commun Mass Spectrom 2007;21:661-666.
  • 90 Cai J, Hurst HE. Identification and quantitation of N-(carboxymethyl)valine adducts in hemoglobin by gas chromatography/mass spectrometry. J. Mass Spectrom. 1999;34:537-543.
  • 91 Brock JWC, Hinton DJS, Cotham WE, Metz TO, Thorpe SR, Baynes JW, et al. Proteomic analysis of the site specificity of glycation and carboxymethylation of ribonuclease. JProteome Res 2003;2:506-513.
  • 92 Schmidt R, Bohme D, Singer D, Frolov A. Specific tandem mass spectrometric detection of AGE-modified arginine residues in peptides.

J Mass Spectrom 2015;50:613-624.

  • 93 Rabbani N, Thornalley PJ. Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples. Nat Protoc 2014;9:1969-1979.
  • 94 Zhang Q, Monroe ME, Schepmoes AA, Clauss TRW, Gritsenko MA, Meng D, et al. Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. J Proteome Res 2011;10:3076-3088.
  • 95 Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia 2010;53:1506-1516.
  • 96 Nagaraj N, Kulak NA, Cox J, Neuhauser N, Mayr K, Hoerning O, et al. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench Top orbitrap. Mol Cell Proteomics 2012;11:11.
  • 97 Meyer JG. In silico proteome cleavage reveals iterative digestion strategy for high sequence coverage. ISRN Comput Biol 2014;2014:7.
  • 98 Zhang Q, Tang N, Brock JWC, Mottaz HM, Ames JM, Baynes JW, et al. Enrichment and analysis of nonenzymatically glycated peptides: Boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry. J Proteome Res 2007;6:2323-2330.
  • 99 Goodall I. HbA1c standardisation destination-global IFCC Standardisation. How, why, where and when--a tortuous pathway from kit manufacturers, via inter-laboratory lyophilized and whole blood comparisons to designated national comparison schemes. Clin Biochem Rev 2005;26:5-19.
  • 100 Lo TWC, Westwood ME, McLellan AC, Selwood T, Thornalley PJ. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with Na-acetylarginine, Na- acetylcysteine, Na-acetyl-lysine, and bovine serum albumin. J Biol Chem 1994;269:32299-32305.
  • 101 Leitner A, Lindner W. Functional probing of arginine residues in proteins using mass spectrometry and an arginine-specific covalent tagging concept. Anal Chem 2005;77:4481-4488.
  • 102 Leitner A, Amon S, Rizzi A, Lindner W. Use of the arginine-specific butanedione/phenylboronic acid tag for analysis of peptides and protein digests using matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 2007;21:1321-1330.
  • 103 Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 2012;40:W537-W541.
  • 104 Harris R, Patel SU, Sadler PJ, Viles JH. Observation of albumin resonances in proton nuclear magnetic resonance spectra of human blood plasma: N-terminal assignments aided by use of modified recombinant albumin. Analyst 1996;121:913-922.
  • 105 Venkatraman J, Aggarwal K, Balaram P. Helical peptide models for protein glycation: Proximity effects in catalysis of the Amadori rearrangement. Chem Biol 2001;8:611-625.
  • 106 Smith PR, Thornalley PJ. Mechanism of the degradation of nonenzymatically glycated proteins under physiological conditions. (Studies with the model fructosamine, N-(1-deoxy-D-fructose-1-yl)hippuryl-lysine). Eur J Biochem 1992;210:729-739.
  • 107 Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature 2011;473:337-342.
  • 108 Schleicher E, Wieland OH. Kinetic analysis of glycation as a tool for assessing the half-life of proteins. Biochim Biophys Acta 1986;884:199-205.
  • 109 Delpierre G, Rider MH, Collard F, Stroobant V, Vanstapel F, Santos H, et al. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes 2000;49:1627-1634.
  • 110 Delpierre G, Vertommen D, Communi D, Rider MH, Van Schaftingen E. Identification of fructosamine residues deglycated by fructosamine-3-kinase in human hemoglobin. J Biol Chem 2004;279:27613-27620.
  • 111 Johansen MB, Kiemer L, Brunak S. Analysis and prediction of mammalian protein glycation. Glycobiology 2006;16:844-853.
  • 112 Westwood ME, Thornalley PJ. Molecular characteristics of methylglyoxal- modified bovine and human serum albumins. Comparison with glucose- derived advanced glycation endproduct-modified serum albumins. J Prot Chem 1995;14:359-372.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel