Log in / Register
Home arrow Health arrow Analysis of Protein Post-Translational Modifications by Mass Spectrometry


1 Pucca MB, Bertolini TB, Barbosa JE, Galina SVR, Porto GS. Therapeutic monoclonal antibodies: ScFv patents as a marker of a new class of potential biopharmaceuticals. Braz JPharm Sci 2011;47(1):31-39.

  • 2 Beck A, Reichert JM. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs 2011;3(5):415-416.
  • 3 Wu B, Sun Y-N, Wu B, Sun Y-N. Pharmacokinetics of peptide-Fc fusion proteins. JPharm Sci 2013;103:53-64. J Pharm Sci 2014;103(6):1583-1928.
  • 4 Nelson AL. Antibody fragments: Hope and hype. MAbs 2010;2(1):77-83.
  • 5 May C, Sapra P, Gerber HP. Advances in bispecific biotherapeutics for the treatment of cancer. Biochem Pharmacol 2012;84(9):П05-П12.
  • 6 Kontermann RE. Dual targeting strategies with bispecific antibodies. MAbs 2012;4(2):182-197.
  • 7 Lianos GD, Vlachos K, Zoras O, Katsios C, Cho WC, Roukos DH. Potential of antibody-drug conjugates and novel therapeutics in breast cancer management. Onco Targets Ther 2014;7:491-500.
  • 8 Chari RVJ, Miller ML, Widdison WC. Antibody-drug conjugates: An emerging concept in cancer therapy. Angew Chem Int Ed 2014;53(15):3796-3827.
  • 9 Steiner M, Neri D. Antibody-radionuclide conjugates for cancer therapy: Historical considerations and new trends. Clin Cancer Res 2011;17(20):6406-6416.
  • 10 Hess C, Venetz D, Neri D. Emerging classes of armed antibody therapeutics against cancer. MedChemComm 2014;5:408.
  • 11 Moran N. Biotech innovators jump on biosimilars bandwagon. Nat Biotechnol 2012;30(4):297-299.
  • 12 Agostini C, Canonica GW, Maggi E. European Medicines Agency guideline for biological medicinal products: A further step for a safe use of biosimilars. Clin Mol Allergy 2015;13(3):15-16.
  • 13 Schellekens H. The first biosimilar epoetin: But how similar is it? Clin J Am Soc Nephrol 2008;3(1):174-178.
  • 14 Mellstedt H. Implications of the development of biosimilars for cancer treatment. Future Oncol 2010;6(7):1065-1067.
  • 15 ICH. ICH Harmonised Tripartite Guideline. Comparability of Biotechnological/Biological Products Subject to Changes in Their Manufacturing Process Q5E. 2005.
  • 16 Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br J Pharmacol 2009;157(2):220-233.
  • 17 Gomollon F. Biosimilars: Are they bioequivalent? DigDis 2014;32:82-87.
  • 18 Nellore R. Regulatory considerations for biosimilars. Perspect Clin Res 2010;1(1):11-14.
  • 19 Berkowitz SA, Engen JR, Mazzeo JR, Jones GB. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov 2012;11(7):527-540.
  • 20 Damen CWN, Chen W, Chakraborty AB, van Oosterhout M, Mazzeo JR, Gebler JC, et al. Electrospray ionization quadrupole ion-mobility time-offlight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab.

J Am Soc Mass Spectrom 2009;20(11):2021-2033.

  • 21 Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-cianfe S. Characterization of therapeutic antibodies and related products. Anal Chem 2013;85:715-736.
  • 22 Rojas R, Apodaca G. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 2002;3(12):944-955.
  • 23 Glennie MJ, van de Winkel JGJ. Renaissance of cancer therapeutic antibodies. DrugDiscov Today 2003;8(11):503-510.
  • 24 Junqueira LC, Carneira J, Kelley RO. Basic Histology. McGraw-Hill Publishing Co.; 1998.
  • 25 Poljak RJ, Amzel LM, Avey HP, Chen BL, Phizackerley RP, Saul F. Threedimensional structure of the Fab' fragment of a human immunoglobulin at 2,8-A resolution. Proc Natl Acad Sci U S A 1973;70(12):3305-3310.
  • 26 Janeway CAJ, Travers P, Walport M, Shlomchik MJ. Immunobiology: The immune system in health and disease. 5th ed. Garland Science: New York; 2001.
  • 27 Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. JPharm Sci 2007;96(1):1-26.
  • 28 Pink JR, Milstein C. Inter heavy-light chain disulphide bridge in immune globulins. Nature 1967;214:92-94.
  • 29 Milstein C. The heterogeneity of human immunoglobulins. Biochem J 1968;110(3):26-27.
  • 30 Liu H, May K. Disulfide bond structures of IgG molecules: Structural variations, chemical modifications and possible impacts to stability and biological function. MAbs 2012;4(1):17-23.
  • 31 Milstein C, Frangione B. Disulphide bridges of the heavy chain of human immunoglobulin G2. Biochem J 1971;121(2):217-225.
  • 32 Melmer M, Stangler T, Schiefermeier M, Brunner W, Toll H, Rupprechter A, et al. HILIC analysis of fluorescence-labeled N-glycans from recombinant biopharmaceuticals. Anal Bioanal Chem 2010;398(2):905-914.
  • 33 Wright A, Tao M, Kabat EA, Morrison SL. Antibody variable region glycosylation : Position effects on antigen binding and carbohydrate structure. Eur Mol Biol Organ 1991;10(10):2717-2723.
  • 34 Wang X, Kumar S, Buck PM, Singh SK. Impact of deglycosylation and thermal stress on conformational stability of a full length murine igG2a monoclonal antibody: Observations from molecular dynamics simulations. Proteins Struct Funct Bioinform 2013;81(3):443-460.
  • 35 Kayser K, Lin N, Allison D, Donahue L, Caple M. Cell line engineering methods for improving productivity. Bioprocess Int 2006;4:6-13.
  • 36 Noh SM, Sathyamurthy M, Lee GM. Development of recombinant Chinese hamster ovary cell lines for therapeutic protein production. Curr Opin Chem Eng 2013;2(4):391-397.
  • 37 Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol 2010;28(9):1-10.
  • 38 Beck A, Sanglier-cianfe S, Van Dorsselaer A. Biosimilar, biobetter and next generation antibody characterization by mass spectrometry. Anal Chem 2012;84:4637-4646.
  • 39 Sliwkowski MX, Mellman I. Antibody therapeutics in cancer. Science 2013;341:1192-1198.
  • 40 An Y, Zhang Y, Mueller H, Shameem M, Chen X. A new tool for monoclonal antibody analysis - application of IdeS proteolysis in IgG domain-specific characterization. MAbs 2014;6(4):1-15.
  • 41 Leymarie N, Zaia J. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem 2012;84(7):3040-3048.
  • 42 Bharti A, Ma PC, Salgia R. Biomarker discovery in lung cancer - promises and challenges of clinical proteomics. Mass Spectrom Rev 2009;26(3):451-466.
  • 43 Yamane-Ohnuki N, Satoh M. Production of therapeutic antibodies with controlled fucosylation. MAbs 2009;1(3):230-236.
  • 44 Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 2005;21(1):11-16.
  • 45 Fernandes D. Demonstrating comparability of antibody glycosylation during biomanufacturing. Eur Biopharm Rev 2005:106-110.
  • 46 Roger SD. Biosimilars: How similar or dissimilar are they? Nephrology (Carlton) 2006;11(4):341-346.
  • 47 Ayoub D, Jabs W, Resemann A, Evers W. Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. MAbs 2013;10:699-710.
  • 48 Mizushima T, Yagi H, Takemoto E, Shibata-Koyama M, Isoda Y, Iida S, et al. Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Genes Cells 2011;16:1071-1080.
  • 49 Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, et al. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: The high- mannose, hybrid, and complex types. Glycobiology 2006;17(1):104-118.
  • 50 Okazaki A, Shoji-Hosaka E, Nakamura K, Wakitani M, Uchida K, Kakita S, et al. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcyRIIIa. J Mol Biol 2004;336:1239-1249.
  • 51 Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Gloria Meng Y, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcGammaRIII and antibody-dependent cellular toxicity. J Biol Chem 2002;277(30):26733-26740.
  • 52 Hudis CA. Trastuzumab — mechanism of action and use in clinical practice.

N Engl J Med 2007;357(1):39-51.

  • 53 Shen Y, Liu H. Methods to determine the level of afucosylation in recombinant monoclonal antibodies. Anal Chem 2010;82(23):9871-9877.
  • 54 Presta LG. Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 2008;20(4):460-470.
  • 55 Debaene F, Amandine B, Wagner-Rousset E, Colas O, Ayoub D, Corva N, et al. Innovative native MS methodologies for antibody drug conjugate characterization: High resolution native MS and IM-MS for average DAR and DAR distribution assessment. Anal Chem 2014;86:10674-10683.
  • 56 Chen J, Yin S, Wu Y, Ouyang J. Development of a native nanoelectrospray mass spectrometry method for determination of the drug-to-antibody ratio of antibody-drug conjugates. Anal Chem 2013;85(3):1699-1704.
  • 57 Firth D, Bell L, Squires M, Estdale S, McKee C. A rapid approach for characterization of thiol-conjugated ADCs and calculation of drug-antibody ratio by LC-MS. Anal Biochem 2015;485:34-42.
  • 58 Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody- calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 2002;13(1):47-58.
  • 59 Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 2008;26(8):925-932.
  • 60 Trail PA, Willner D, Lasch SJ, Henderson AJ, Hofstead S, Casazza AM, et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 1993;261(5118):212-215.
  • 61 Teicher BA, Chari RVJ. Antibody conjugate therapeutics: Challenges and potential. Clin Cancer Res 2011;17(20):6389-6397.
  • 62 Hamblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 2004;10(425):7063-7070.
  • 63 Wakankar A, Chen Y, Gokarn Y, Jacobson FS. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs 2011;3(2):161-172.
  • 64 Wang J, Chow SC. On the regulatory approval pathway of biosimilar products. Pharmaceuticals 2012;5:353-368.
  • 65 Beck A, Debaene F, Diemer H, Wagner-Rousset E, Colas O, Van Dorsselaer A, et al. Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. J Mass Spectrom 2015;50:285-297.
  • 66 Staub A, Guillarme D, Schappler J, Veuthey J-L, Rudaz S. Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 2011;55(4):810-822.
  • 67 Schneider CK, Kalinke U. Toward biosimilar monoclonal antibodies. Nat Biotechnol 2008;26(9):985-990.
  • 68 Xie H, Chakraborty A, Ahn J, Yu YQ, Dakshinamoorthy DP, Gilar M, et al. Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies. MAbs 2010;2(4):379-394.
  • 69 Strand V, Cronstein B. Biosimilars: How similar? Intern Med J 2014;44(3):218-223.
  • 70 Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol 2014;32(10):992-1000.
  • 71 Shah B, Jiang XG, Chen L, Zhang Z. LC-MS/MS peptide mapping with automated data processing for routine profiling of N-glycans in Immunoglobulins. J Am Soc Mass Spectrom 2014;25(6):999-1011.
  • 72 Ahn J, Bones J, Yu YQ, Rudd PM, Gilar M. Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 um sorbent. J Chromatogr B Anal Technol BiomedLife Sci 2010;878:403-408.
  • 73 Higel F, Demelbauer U, Seidl A, Friess W, Sorgel F. Reversed-phase liquid- chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal Bioanal Chem 2013;405(8):2481-2493.
  • 74 Prater BD, Connelly HM, Qin Q, Cockrill SL. High-throughput immunoglobulin G N-glycan characterization using rapid resolution reverse- phase chromatography tandem mass spectrometry. Anal Biochem 2009;385(1):69-79.
  • 75 Nielsen RG, Rickard EC, Santa PF, Sharknas DA, Sittampalam GS. Separation of antibody-antigen complexes by capillary zone electrophoresis, isoelectric- focusing and high-performance size-exclusion chromatography. J Chromatogr 1991;539(1):177-185.
  • 76 Jayo RG, Thaysen-Andersen M, Lindenburg PW, Haselberg R, Hankemeier T, Ramautar R, et al. Simple capillary electrophoresis-mass spectrometry method for complex glycan analysis using a flow-through microvial interface. Anal Chem 2014;86(13):6479-6486.
  • 77 Diepold K, Bomans K, Wiedmann M, Zimmermann B, Petzold A, Schlothauer T, et al. Simultaneous assessment of Asp isomerization and Asn deamidation in recombinant antibodies by LC-MS following incubation at elevated temperatures. PLoS One 2012;7(1):1-11.
  • 78 Damen CWN, Rosing H, Schellens JHM, Beijnen JH. Quantitative aspects of the analysis of the monoclonal antibody trastuzumab using high-performance liquid chromatography coupled with electrospray mass spectrometry. J Pharm Biomed Anal 2008;46(3):449-455.
  • 79 Gilar M, Yu Y-Q, Ahn J, Xie H, Han H, Ying W, et al. Characterization of glycoprotein digests with hydrophilic interaction chromatography and mass spectrometry. Anal Biochem 2011;417(1):80-88.
  • 80 Wuhrer M, de Boer AR, Deelder AM. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev 2009;28:192-206.
  • 81 Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev 2009;30:19-34.
  • 82 Lauber MA, Yu Y-Q, Brousmiche DW, Hua Z, Koza SM, Magnelli P, et al. Rapid preparation of released N-glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem 2015;87:5401-5409.
  • 83 Tarentino AL, Gomez CM, Plummer TH Jr. Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry 1985;24(17):4665-4671.
  • 84 Thompson NJ, Rosati S, Heck AJR. Performing native mass spectrometry analysis on therapeutic antibodies. Methods 2014;65(1):11-17.
  • 85 Taron CH, Duke R. N-glycan composition profiling for quality testing of biotherapeutics. BioPharm Int 2015;28(12):59-64.
  • 86 Goetze AM, Zhang Z, Liu L, Jacobsen FW, Flynn GC. Rapid LC-MS screening for IgG Fc modifications and allelic variants in blood. Mol Immunol 2011;49(1-2):338-352.
  • 87 Stacey M, Nashabeh W. Carbohydrate analysis of a chimeric recombinant monoclonal antibody by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 1999;71(22):5185-5192.
  • 88 Gennaro LA, Salas-Solano O. On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem 2008;80(10):5185-5192.
  • 89 Alvarez M, Tremintin G, Wang J, Eng M, Kao YH, Jeong J, et al. On-line characterization of monoclonal antibody variants by liquid chromatography- mass spectrometry operating in a two-dimensional format. Anal Biochem 2011;419:17-25.
  • 90 Wei H, Mo J, Tao L, Russell RJ, Tymiak AA, Chen G, et al. Hydrogen/ deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: Methodology and applications. DrugDiscov Today 2014;19(1):95-102.
  • 91 Englander SW, Sosnick TR, Englander JJ, Mayne L. Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol 1996;6(1):18-23.
  • 92 Katta V, Chait BT. Hydrogen/deuterium exchange electrospray ionization mass spectrometry : A method for probing protein conformational changes in solution. J Am Chem Soc 1993;115:6317-6321.
  • 93 Englander SW. Hydrogen exchange and mass spectrometry: A historical perspective. J Am Soc Mass Spectrom 2006;17(11):1481-1489.
  • 94 Katta V, Chait BT. Conformational changes in proteins probed by hydrogen- exchange electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom 1991;5(4):214-217.
  • 95 Thompson NJ, Rosati S, Rose RJ, Heck AJR. The impact of mass spectrometry on the study of intact antibodies: from post-translational modifications to structural analysis. Chem Commun 2013;49(6):538-548.
  • 96 Zhang A, Hu P, Macgregor P, Xue Y, Fan H, Suchecki P, et al. Understanding the conformational impact of chemical modifications on monoclonal antibodies with diverse sequence variation using hydrogen/deuterium exchange mass spectrometry and structural modeling. Anal Chem 2014;86(7):3468-3475.
  • 97 Mo J, Tymiak AA. Chen G. Structural mass spectrometry in biologics discovery: Advances and future trends. DrugDiscov Today 2012;17(23-24):1323-1330.
  • 98 Pan LY, Salas-Solano O, Valliere-Douglass JF. Conformation and dynamics of interchain cysteine-linked antibody-drug conjugates as revealed by hydrogen/deuterium exchange mass spectrometry. Anal Chem 2014;86(5):2657-2664.
  • 99 Fitzgerald MC, West GM. Painting proteins with covalent labels: What's in the picture? J Am Soc Mass Spectrom 2009;20(6):1193-1206.
  • 100 Zhang Q. Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2011;83:7129-7136.
  • 101 Baerga-ortiz A, Hughes CA, Mandell JG, Komives EA. Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein. Protein Sci 2002;11:1300-1308.
  • 102 Houde D, Arndt J, Domeier W, Berkowitz S, Engen JR. Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Anal Chem 2009;81(7):2644-2651.
  • 103 Rose RJ, Van Berkel PHC, Van Den Bremer ETJ, Labrijn AF, Vink T, Schuurman J, et al. Mutation of Y407 in the CH3 domain dramatically alters glycosylation and structure of human IgG. MAbs 2013;5(2):219-228.
  • 104 Zhang A, Singh SK, Shirts MR, Kumar S, Fernandez EJ. Distinct aggregation mechanisms of monoclonal antibody under thermal and freeze-thaw stresses revealed by hydrogen exchange. Pharm Res 2012;29(1):236-250.
  • 105 Zhang Z, Zhang A, Xiao G. Improved protein hydrogen/deuterium exchange mass spectrometry platform with fully automated data processing. Anal Chem 2012;84(11):4942-4949.
  • 106 Iacob RE, Bou-Assaf GM, Makowski L, Engen JR, Berkowitz SA, Houde D. Investigating monoclonal antibody aggregation using a combination of H/ DX-MS and other biophysical measurements. J Pharm Sci 2013;102(12):4315-4329.
  • 107 Edgeworth MJ, Phillips JJ, Lowe DC, Kippen AD, Higazi DR, Scrivens JH. Global and local conformation of human IgG antibody variants rationalizes loss of thermodynamic stability. Angew Chem Int Ed 2015;54:15156-15159.
  • 108 Visser J, Feuerstein I, Stangler T, Schmiederer T, Fritsch C, Schiestl M. Physicochemical and functional comparability between the proposed biosimilar rituximab GP2013 and originator rituximab. BioDrugs 2013;27(5):495-507.
  • 109 Jensen PF, Larraillet V, Schlothauer T, Kettenberger H, Hilger M, Rand KD. Investigating the interaction between the neonatal Fc receptor and monoclonal antibody variants by hydrogen/deuterium exchange mass spectrometry. Mol Cell Proteomics 2015;14(1):148-161.
  • 110 Wang X, Li Q, Davies M. Development of antibody arrays for monoclonal antibody higher order structure analysis. Front Pharmacol 2013;4:1-8.
  • 111 Tito MA, Miller J, Walker N, Griffin KF, Williamson ED, Despeyroux-Hill D, et al. Probing molecular interactions in intact antibody: antigen complexes, an electrospray time-of-flight mass spectrometry approach. Biophys J 2001;81(6):3503-3509.
  • 112 Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry:

A technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem 2012;2012:1-40.

  • 113 Wilm M, Mann M. Analytical properties of the nanoelectrospray ion source. Anal Chem 1996;68:1-8.
  • 114 Rosati S, Yang Y, Barendregt A, Heck AJR. Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry. Nat Protoc 2014;9(4):967-976.
  • 115 Pacholarz KJ, Porrini M, Garlish RA, Burnley RJ, Taylor RJ, Henry AJ, et al. Dynamics of intact immunoglobulin G explored by drift-tube ion-mobility mass spectrometry and molecular modeling. Angew Chem Int Ed 2014;53(30):7765-7769.
  • 116 Debaene F, Wagner-Rousset E, Colas O, Ayoub D, Corva'ia N, Van Dorsselaer A, et al. Time resolved native ion-mobility mass spectrometry to monitor dynamics of igg4 fab arm exchange and “bispecific” monoclonal antibody formation. Anal Chem 2013;85:9785-9792.
  • 117 Shelimov KB, Clemmer DE, Hudgins RR, Jarrold MF. Protein structure in vacuo: Gas-phase conformations of BPTI and cytochrome c. J Am Chem Soc 1997;119:2240-2248.
  • 118 Clemmer DE, Hudgins RR, Jarrold MF. Naked protein conformations: Cytochrome c in the gas phase. J Am Chem Soc 1995;117:10141-10142.
  • 119 Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, et al. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 2007;261(1):1-12.
  • 120 Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 2004;18(20):2401-2414.
  • 121 Olivova P, Chen W, Chakraborty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2008;22:29-40.
  • 122 Bagal D, Valliere-Douglass JF, Balland A, Schnier PD. Resolving disulfide structural isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry. Anal Chem 2010;82(16):6751-6755.
  • 123 Pacholarz K, Peters SJ, Garlish RA, Henry AJ, Taylor RJ, Humphreys DP, et al. Molecular insights to the thermal stability of mAbs with variable temperature Ion mobility mass spectrometry. ChemBioChem 2016;17:46-51.
  • 124 Knapman TW, Berryman JT, Campuzano I, Harris SA, Ashcroft AE. Considerations in experimental and theoretical collision cross-section measurements of small molecules using travelling wave ion mobility spectrometry-mass spectrometry. Int JMass Spectrom 2010;298(1-3):17-23.
  • 125 Thalassinos K, Slade SE, Jennings KR, Scrivens JH, Giles K, Wildgoose J,

et al. Ion mobility mass spectrometry of proteins in a modified commercial mass spectrometer. Int J Mass Spectrom 2004;236:55-63.

  • 126 Kim YJ, Doyle ML. Structural mass spectrometry in protein therapeutics discovery. Anal Chem 2010;82(17):7083-7089.
  • 127 Pritchard C, Connor GO, Ashcroft AE. The role of Ion mobility spectrometry - mass spectrometry in the analysis of protein reference standards. Anal Chem 2013;85:7205-7212.
  • 128 Jones LM, Zhang H, Cui W, Kumar S, Sperry JB, Carroll JA, et al. Complementary MS methods assist conformational characterization of antibodies with altered S-S bonding networks. J Am Soc Mass Spectrom 2013;24(6):835-845.
  • 129 Tian Y, Han L, Buckner AC, Ruotolo BT. Collision induced unfolding of intact antibodies: Rapid characterization of disulfide bonding patterns, glycosylation, and structures. Anal Chem 2015;87:11509-11515.
  • 130 Dillon TM, Ricci MS, Vezina C, Flynn GC, Liu YD, Rehder DS, et al. Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J Biol Chem 2008;283(23):16206-16215.
  • 131 Wypych J, Li M, Guo A, Zhang Z, Martinez T, Allen MJ, et al. Human IgG2 antibodies display disulfide-mediated structural isoforms. J Biol Chem 2008;283(23):16194-16205.
  • 132 Martinez T, Guo A, Allen MJ, Han M, Pace D, Jones J, et al. Disulfide connectivity of human immunoglobulin G2 structural isoforms. Biochemistry 2008;47(28):7496-7508.
  • 133 Liu YD, Wang T, Chou R, Chen L, Kannan G, Stevenson R, et al. IgG2 disulfide isoform conversion kinetics. Mol Immunol 2013;54(2):217-226.
  • 134 Liu YD, Chen X, Enk JZ, Plant M, Dillon TM, Flynn GC. Human IgG2 antibody disulfide rearrangement in vivo. J Biol Chem 2008;283(43):29266-29272.
  • 135 Liu YD, Chou RY-T, Dillon TM, Poppe L, Spahr C, Shi SDH, et al. Protected hinge in the immunoglobulin G2-A2 disulfide isoform. Protein Sci 2014;23(12):1753-1764.
  • 136 Zhang A, Fang J, Chou RY-T, Bondarenko PV, Zhang Z. Conformational difference in human IgG2 disulfide isoforms revealed by hydrogen/ deuterium exchange mass spectrometry. Biochemistry 2015;54:1956-1962.
  • 137 Peters SJ, Smales CM, Henry AJ, Stephens PE, West S, Humphreys DP. Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability. J Biol Chem 2012;287(29):24525-24533.
  • 138 Mao Y, Ratner MA, Jarrold MF. Molecular dynamics simulations of the charge-induced unfolding and refolding of unsolvated cytochrome c. J Phys Chem B 1999;103(45):10017-10021.
  • 139 Dickinson ER, Jurneczko E, Parcholarz K, Clarke DJ, Reeves M, Ball KL, et al. Insights to the conformations of three structurally diverse proteins: Cytochrome c, p53 and MDM2, provided by variable temperature ion mobility mass spectrometry. Anal Chem 2015;87:3231-3238.
  • 140 Pacholarz KJ, Barran PE. Distinguishing loss of structure from subunit dissociation for protein complexes with variable temperature Ion mobility mass spectrometry. Anal Chem 2015;87(12):6271-6279.
  • 141 Berezovskaya Y, Porrini M, Barran PE. The effect of salt on the conformations of three model proteins is revealed by variable temperature ion mobility mass spectrometry. Int J Mass Spectrom 2013;345-347:8-18.
  • 142 Du Y, May K, Xu W, Liu H. Detection and quantitation of afucosylated n-linked oligosaccharides in recombinant monoclonal antibodies using enzymatic digestion and LC-MS. J Am Soc Mass Spectrom 2012;23(May):1241-1249.
  • 143 Wenig K, Chatwell L, von Pawel-Rammingen U, Bjorck L, Huber R, Sondermann P. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc Natl Acad Sci U S A 2004;101(50):17371-17376.
  • 144 von Pawel-Rammingen U, Johansson BP, Bjorck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 2002;21(7):1607-1615.
  • 145 Firth D, Upton R, Bell L, Guy C, Caldwell P, Estdale S, Barran PE. Orthogonal assessment of biotherapeutic glycosylation: A case study correlating N-glycan core afucosylation with mechanism of (Submitted).
  • 146 Ouyang J. Drug-to-antibody ratio (DAR) and drug load distribution by hydrophobic interaction chromatography and reversed phase high- performance liquid chromatography. Methods Mol Biol 2013;1045:275-283.
  • 147 Jackson D, Atkinson J, Guevara CI, Zhang C, Kery V, Moon S-J, et al. In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates. PLoS One 2014;9(1):e83865.
  • 148 McDonagh CF, Turcott E, Westendorf L, Webster JB, Alley SC, Kim K, et al. Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein EngDes Sel 2006;19(7):299-307.
  • 149 Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 2010;10(5):345-352.
  • 150 Wagner-Rousset E, Janin-Bussat M-C, Colas O, Excoffier M, Ayoub D, Haeuw J-F, et al. Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. MAbs 2014;6(1):273-285.
  • 151 Lazar AC, Wang L, Blattler WA, Amphlett G, Lambert JM, Zhang W. Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun Mass Spectrom 2005;19(13):1806-1814.
  • 152 Valliere-Douglass JF, Hengel SM, Pan LY. Approaches to interchain cysteine- linked ADC characterization by mass spectrometry. Mol Pharm 2015;12:1774-1783.
  • 153 Valliere-Douglass JF, McFee WA, Salas-Solano O. Native intact mass determination of antibodies conjugated with monomethyl Auristatin e and F at interchain cysteine residues. Anal Chem 2012;84(6):2843-2849.
  • 154 Hengel SM, Sanderson R, Valliere-Douglass J, Nicholas N, Leiske C, Alley SC. Measurement of in vivo drug load distribution of cysteine-linked antibody-drug conjugates using microscale liquid chromatography mass spectrometry. Anal Chem 2014;86(7):3420-3425.
  • 155 Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 2014;343(March):1260-1263.
  • 156 Pacholarz KJ, Barran PE. Use of charge reducing agent to enable intact mass analysis of cysteine-linked antibody-drug-conjugates by native mass spectrometry. EuPA Open Proteomics 2016;11:23-27.
  • 157 Marcoux J, Champion T, Colas O, Wagner-Rousset E, Corva'ia N, Van Dorsselaer A, et al. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate. Protein Sci 2015;24(8):1210-1223.
  • 158 Gautier V, Boumeester AJ, Lossl P, Heck AJR. Lysine conjugation properties in human IgGs studied by integrating high-resolution native mass spectrometry and bottom-up proteomics. Proteomics 2015;15(16):2756-2765.
  • 159 Chen S-L, Wu S-L, Huang L-J, Huang J-B, Chen S-H. A global comparability approach for biosimilar monoclonal antibodies using LC-tandem MS based proteomics. J Pharm Biomed Anal 2013;80:126-135.
Found a mistake? Please highlight the word and press Shift + Enter  
Business & Finance
Computer Science
Language & Literature
Political science