Menu
Home
Log in / Register
 
Home arrow Environment arrow Natural fiber-reinforced biodegradable and bioresorbable polymer composites
Source

References

[1] Brosius D. Natural fiber composites slowly take root. Compos Technol 2006;32—7.

[2] Joshi SV, Drzal L, Mohanty A, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 2004;35

(3):371—6.

[3] Masoodi R, El-Hajjar R, Pillai K, Sabo R. Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Mater Des 2012;36:570-6.

[4] Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, et al. Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 2010;45(1):1-33.

[5] Henriksson M, Berglund LA. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 2007;106(4):2817-24.

[6] Lee S-Y, Chun S-J, Kang I-A, Park J-Y. Preparation of cellulose nanofibrils by high- pressure homogenizer and cellulose-based composite films. J Industrial Eng Chem 2009;15(1):50-5.

[7] Sira I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 2010;17(3):459-94.

[8] Innerlohinger J, Weber HK, Kraft G. Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromolecular Symposia. Wiley Online Library; 2006.

[9] Tan C, Fung B, Newman J, Vu C. Organic aerogels with very high impact strength. Adv Mater 2001;13(9):644-6.

[10] Hiising N, Schubert U. Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 1998;37(1-2):22-45.

[11] Tingaut P, Zimmermann T, Sebe G. Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 2012;22(38):20105-11.

[12] Li W, Lu K, Walz J. Freeze casting of porous materials: review of critical factors in microstructure evolution. Int Mater Rev 2012;57(1):37-60.

[13] Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer (Guildf) 2008;49(5):1285-96.

[14] Kuo P-Y, Yan N, Sain M. Influence of cellulose nanofibers on the curing behavior of epoxy/amine systems. Eur Polym J 2013;49(12):3778-87.

[15] Shibata M, Nakai K. Preparation and properties of biocomposites composed of biobased epoxy resin, tannic acid, and microfibrillated cellulose. J Polym Sci Part B Polym Phys 2010;48(4):425-33.

[16] BeckwithS, Benjamin W. Resin transfer molding. SAMPE Monograph No. 3. Society for the Advancement of Material and Process Engineering, 1161 Parkview Dr, P. O. Box 2459, Covina, CA 91722, USA, p. 187; 1999.

[17] Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T. Cellulose nanopaper structures of high toughness. Biomacromolecules 2008;9(6):1579-85.

[18] Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, et al. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 2009;10(7):1992-6.

[19] Barari B, Pillai KM. Search for a ‘Green’Composite Material: an attempt to fabricate cellulose nano-fiber composites using liquid composite molding. J Indian Inst Sci 2015;95(3):313-20.

[20] Barari B, Ellingham T, Qamhia I, Pillai K, El-Hajjar R, Turng L-S, et al. Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Compos Part B Eng 2015.

[21] Barari B, Omrani E, Moghadam AD, Menezes PL, Pillai KM, Rohatgi PK. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: an attempt to fabricate and scale the ‘Green’composite. Carbohydr Polym 2016;147:282-93.

[22] Alamri H, Low IM. Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites. Polym Compos 2012;33(4):589—600.

[23] Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 2000;246 (1):1—11.

[24] Low IM, Somers J, Kho H, Davies I, Latella B. Fabrication and properties of recycled cellulose fibre-reinforced epoxy composites. Compos Interfaces 2009;16(7-9):659—69.

[25] Alamri H, Low IM. Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polym Test 2012;31(5):620—8.

[26] Myshkin N, Petrokovets M, Kovalev A. Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribol Int 2006;38(11):910—21.

[27] Bahadur S. The development of transfer layers and their role in polymer tribology. Wear 2000;245(1):92—9.

[28] Chang L, Friedrich K. Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: a critical discussion of wear mechanisms. Tribol Int 2010;43(12):2355—64.

[29] Xian G, Walter R, Haupert F. Friction and wear of epoxy/TiO 2 nanocomposites: influence of additional short carbon fibers, Aramid and PTFE particles. Compos Sci Technol 2006;66(16):3199—209.

[30] Menezes PL, Kailas SV. Influence of surface texture and roughness parameters on friction and transfer layer formation during sliding of aluminium pin on steel plate. Wear 2009;267(9):1534—49.

[31] Menezes PL, Kailas SV. On the effect of surface texture on friction and transfer layer formation—a study using Al and steel pair. Wear 2008;265(11):1655—69.

This page intentionally left blank

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel