The authors wish to acknowledge the IUACC “Instituto Universitario de Arquitectura y Ciencias de la Construction” for the necessary support to develop this research. This research have been partially funded by the TEP-1988 project PANEL of the 2012 call of the Direction General de Investigation, Tecnologia y Empresa. Consejeria de Economia, Innovation, Ciencia y Empleo. Junta de Andalucia.


Abtahi, M., Ebadi, F., Hejazi, M., Sheikhzadeh, M., 2008. On the use of textile fibers to achieve mechanical soil stabilization. In: International Textile, Clothing and Design Conference, Dubrovnik, Croatia, 5—8 October.

Abtahi, M., Sheikhzadeh, M., Hejazi, M., 2010. Fiber-reinforced asphalt-concrete mixtures- a review. Cons. Build. Mat. 24, 871 — 877.

Achenza, M., Fenu, L., 2006. On earth stabilization with natural polymers for earth masonry construction. Mater. Struct. Available from:

Adesanya, D.A., 1996. Evaluation of blended cement mortar, concrete and stabilized earth made from ordinary Portland cement and corn cob ash. Constr. Build. Mater. 10 (6), 451—456.

Aggarwal, L.K., 1995. Bagasse-reinforced cement composites. Cement Concrete Compos. 17 (2), 107—112.

Agopyan, V., Savastano Jr, H., John, V.M., Cincotto, M.A., 2005. Developments on vegetable fibre-cement based materials in Sao Paulo, Brazil: an overview. Cement and Concrete Composites. 27 (5), 527—536, 2005.

Arumala, J.O., Gondal, T., 2007. COBRA. ISBN: 9781842193570. Compressed earth Building Blocks for Affordable Housing. RICS, London.

Asif, M., Muneer, T., Kelley, R., 2007. Life cycle assessment: a case study of a dwelling home in Scotland. Build. Environ. 42 (3), 1391 — 1394.

Atzeni, C., Pia, G., Sanna, U., Spanu, N., 2008. Mater. Struct. 41, 751.

Bahar, R., Benazzoug, M., Kenai, S., 2004. Performance of compacted cement-stabilised soil. Cem. Concr. Compos. 26 (7), 811—820.

Baker, W., 1997. The reinforcement of turf grass areas using plastics and other synthetic materials: a review. Int. Turf. Grass. Soc. Res. J. 8, 3—13, .

Barone, J.R., Schmidt, W.F., 2005. Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos. Sci. Technol. 65, 173 — 181.

Basha, E.A., Hashim, R., Mahmud, H.B., Muntohar, A.S., 2005. Stabilization of residual soil with rice husk ash and cement. Constr. Build. Mater. 19 (6), 448—453.

Behnood, A., Ghandehari, M., 2009. Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Saf. J. 44, 1015—1022.

Blankenhorn, P.R., Blankenhorn, B.D., Silsbee, M.R., Maria, D., 2001. Effects of fiber surface treatments on mechanical properties of wood fiber-cement composites. Cem. Concr. Res. 31 (7), 1049—1055.

Blengini, G.A., 2009. Life cycle of buildings, demolition and recycling potential: a case study in Turin, Italy. Build. Environ. 44, 319—330.

Chen, B., Liu, J., 2004. Residual strength of hybrid-fiber reinforced high strength concrete after exposure to high temperature. Cem. Concr. Res. 34, 1065—1069.

Chen, T.Y., Burnett, J., Chau, C.K., 2001. Analysis of embodied energy use in the residential building of Hong Kong. Energy. 26, 323—340.

Coutts, R.S.P., 1987. Fibre-matrix interface in air-cured wood-pulp fibre-cement composites. J. Mater. Sci. Lett. 6 (2), 140—142.

Craig, R.F., 2004. Craig’s Soil Mechanics. seventh ed. Spon Press, New York.

Daniels, J.L. 2006. Subgrade Stabilization Alternatives to Lime and Cement. North Carolina Department of Transportation.

Gabm-Marin, C., Rivera-GtSmez, C., Petric, J., 2010. Clay-based composite stabilized with natural polymer and fibre. Constr. Build. Mater. 24 (2010), 1462— 1468.

Galan-Marin, C., Rivera-Gomez, C., Bradley, F., 2013. Ultrasonic, molecular and mechanical testing diagnostics in natural fibre reinforced, polymer-stabilized earth blocks. Int. J. Polym. Sci. 2013, Article number 130582.

Galan-Marin, C., Rivera-Gcimez, C., Garcia-Martinez, A., 2015. Embodied energy of conventional load-bearing walls versus natural stabilized earth blocks. Energy Build. 97, 146—154.

Galan-Marin, C., Rivera-Gomez, C., Garcia-Martinez, Use of natural-fiber bio-composites in construction versus traditional solutions: operational and embodied energy assessment. Materials. Volume 10. Special Issue “Bio- and Natural-Fiber Composites”. 2016. In press.

Gooding, D.E., Thomas, T.H., 1995. The Potential of Cement-stabilised Building Blocks as an Urban Building Material in Developing Countries. University of Warwick, School of Engineering, United Kingdom, DTU (Development Technology Unit) Working Paper No. 44. April 2009.

Heath, A., Maskell, D., Walker, P., Lawrence, M., Fourie, C., 2012. Modern earth masonry: structural properties and structural design. Struct. Eng. 90 (4), 38—44.

Houben, H., Boubekeur, S., 1998. Compressed Earth Blocks: Standards Guide. CRATerre- EAG Publications, Paris, France.

Houben, H., Guillaud, H., 1994. Earth Construction - a comprehensive guide, CRATerre- EAG. Intermediate Technology Publications, London.

Houben, H., Guillaud, H., 1995. Traite de Construction en Terre. Editions Parentheses, Marseille, France, ISBN 2-86364-041-0.

Huberman, N., Pearlmutter, D., 2008. A life-cycle energy analysis of building materials in the Negev desert. Energy Build. 40, 837—848.

Joseph, P.V., Rabello, M.S., Mattoso, L.H.C., Joseph, K., Thomas, S., 2002. Environmental effects on the degradation behavior of sisal fiber reinforced polypropylene composites. Compos. Sci. Technol. 62, 1357—1372.

Karahan, O., Atis, C.D., 2011. The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des. 32, 1044—1049.

Kerali, A.G., 2005. In-service deterioration of compressed earth blocks. Geotechnical Geol. Eng. 23 (4), 461—468, 4.

Lentz, R.D., Sojka, R.E., 1994. Field results using polyacrylamide to manage furrow erosion and infiltration. Soil Sci. Soc. 158, 274—282.

Mattone, R., 2005. Cem. Concr. Compos. 27, 611.

Montgomery, D.M., Sollars, C.J., Perry, R., Tarling, S.E., Barner, P., Henderson, E., 1991. Treatment of organic-contaminated industrial wastes using cement-based stabilization/ solidification. II. Microstructural analysis of the organophilic clay as a pre-solidification adsorbent. Waste Manage. Res. vol. 9, 113 — 125.

Morel, J., Pkla, A., Walker, P., 2007. Compressive strength testing of compressed earth blocks. Constr. Build. Mater. 21, 303—309.

Morton, T., 2008. Earth Masonry Design and Construction Guidelines. Construction Research Communications Limited, Berkshire.

Noumowe, N.A., 2005. Mechanical properties and microstructure of high strength concrete containing polypropylene fibers exposed to temperatures up to 200°C. Cem. Concr. Res. 35, 2192—2198.

Plank, J., 2005. Applications of biopolymers in construction engineering. In: Steinbiichel, A. (Ed.), Biopolymers online. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Pliya, P., Beaucour, A.L., Noumowe, A., 2011. Contribution of cocktail of polypropylene and steel fibers in improving the behavior of high strength concrete subjected to high temperature. Constr. Build. Mater. 25, 1926—1934.

Prabakar, J., Sridhar, R.S., 2002. Effect of random inclusion of sisal fiber on strength behavior of soil. Constr. Build. Mater. 16, 123 — 131.

Qian, C.X., Stroeven, P., 2000. Development of hybrid polypropylene—steel fiberreinforced concrete. Cem. Concr. Res. 30, 63—69.

Raut, S., Ralegaonkar, R., Mandavgane, S., 2011. Development of sustainable construction materials using industrial and agricultural solid waste: a review of waste-create bricks. Constr. Build. Mater. 25, 4037—4042.

Rivera-Gomez, C., Gabm-Marin, C., Bradley, F., 2014. Analysis of the influence of the fiber type in polymer matrix/fiber bond using natural organic polymer stabilizer. Polymers. 6 (4), 977—994.

Shukla, A., Tiwari, G.N., Sodha, M.S., 2009. Embodied energy analysis of adobe house. Renew. Energy. 34 (3), 755—761.

Tang, B., Wang, J., Xu, S., Afrin, T., Tao, J., Xu, W., et al., 2012. Function improvement of wool fabric based on surface assembly of silica and silver nanoparticles. Chem. Eng. J. 185—186, 366—373.

Thormark, C., 2002. A low energy building in a life cycle e its embodied energy, energy need for operation and recycling potential. Build. Environ. 37, 429—435.

Uysal, M., Tanyildizi, H., 2012. Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr. Build. Mater. 27, 404—414.

Venkatarama Reddy, B.V., Jagadish, K.S., 2003. Embodied energy of common and alternative building materials and technologies. Energy Build. 35, 129—137.

Vieira, M., Klemm, D., Einfeldt, L., Albrecht, G., 2005. Dispersing agents for cement based on modified polysaccharides. Cem. Concr. Res. 35, 883—890.

Waldron, J., 1977. Shear resistance of root-permeated homogeneous and stratified soil. Soil. Sci. Soc. Am. J. 41, 843—849.

Walker, P., Venkatarama Reddy, B.V., Mesbah, A., Morel, J.C., 2000. The case for compressed earth block construction. Proceedings of 6th International Seminar on Structural Masonry for Developing Countries. Allied Publishers Ltd, Bangalore, India, pp. 27—35.

Wu, H., Erb, T., 1988. Study of soil-root interaction. J. Geotech. Engng. ASCE. 114, 1351 — 1375.

Xiao, J., Falkner, H., 2006. On residual strength of high-performance concrete with and without polypropylene fibers at elevates temperatures. Fire Saf. J. 41, 115—121.

< Prev   CONTENTS   Source   Next >