Menu
Home
Log in / Register
 
Home arrow Environment arrow Natural fiber-reinforced biodegradable and bioresorbable polymer composites
Source

Acknowledgments

Authors wish to acknowledge the Universiti Teknologi Malaysia (UTM) and Research University Grant 05H22, sub-code: Q.J130000.2509.05H22 for financial support.

References

Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., Takzare, Z., 2014. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test. 35, 73—79.

Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami, A.A., Asl, A.K., 2015. Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly (lactic acid): Morphological and physical properties. Food Packag. Shelf Life. 5, 21—31.

Araujo, A., Botelho, G., Oliveira, M., Machado, A.V., 2014. Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl. Clay Sci. 88, 144— 150.

Arjmandi, R., Hassan, A., Haafiz, M.M., Zakaria, Z., Inuwa, I.M., 2014. Characterization of polylactic acid/microcrystalline cellulose/montmorillonite hybrid composites. Malays. J. Anal. Sci. 18 (3), 642—650.

Arjmandi, R., Hassan, A., Haafiz, M.M., Zakaria, Z., 2015a. Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposites. Int. J. Biol. Macromol. 81, 91—99.

Arjmandi, R., Hassan, A., Eichhorn, S.J., Haafiz, M.M., Zakaria, Z., Tanjung, F.A., 2015b. Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites. J. Mater. Sci. 50 (8), 3118—3130.

Arjmandi, R., Hassan, A., Haafiz, M.M., Zakaria, Z., 2015c. Effect of microcrystalline cellulose on biodegradability, tensile and morphological properties of montmorillonite reinforced polylactic acid nanocomposites. Fibers Polym. 16 (10), 2284—2293.

Arjmandi, R., Hassan, A., Haafiz, M.K.M., Zakaria, Z., Islam, M.S., 2016. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites. Int. J. Biol. Macromol. 82, 998—1010.

Azizi Samir, M.A.S., Alloin, F., Dufresne, A., 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6 (2), 612—626.

Balakrishnan, H., Hassan, A., Wahit, M.U., Yussuf, A.A., Razak, S.B.A., 2010. Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater. Design. 31 (7), 3289—3298.

Baouz, T., Acik, E., Rezgui, F., Yilmazer, U., 2015. Effects of mixing protocols on impact modified poly (lactic acid) layered silicate nanocomposites. J. Appl. Polym. Sci. 132 (8). Available from: http://dx.doi.org/10.1002/app.41518.

Bondeson, D., Mathew, A., Oksman, K., 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose. 13 (2), 171 — 180.

Bras, J., Hassan, M.L., Bruzesse, C., Hassan, E.A., El-Wakil, N.A., Dufresne, A., 2010. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Industrial Crops Prod. 32 (3), 627—633.

Bulota, M., Hughes, M., 2012. Toughening mechanisms in poly (lactic) acid reinforced with TEMPO-oxidized cellulose. J. Mater. Sci. 47 (14), 5517—5523.

Chang, J.H., An, Y.U., Sur, G.S., 2003a. Poly (lactic acid) nanocomposites with various orga- noclays. I. Thermomechanical properties, morphology, and gas permeability. J. Polym. Sci. Part B Polym. Phys. 41 (1), 94—103.

Chang, J.H., An, Y.U., Cho, D., Giannelis, E.P., 2003b. Poly (lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II). Polymer. 44 (13), 3715—3720.

Chen, N.L., Feng, H.X., Guo, J.W., Luo, H.M., Qiu, J.H., 2011. Biodegradable poly (lactic acid)/TDI-montmorillonite nanocomposites: preparation and characterization, Advanced Materials Research, vol. 221. Trans Tech Publications, Switzerland, pp. 211—215.

Cheng, Q., Wang, S., Rials, T.G., 2009. Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos. Part A Appl. Sci. Manuf. 40 (2), 218—224.

Cho, S.Y., Park, H.H., Yun, Y.S., Jin, H.J., 2013. Cellulose nanowhisker-incorporated poly (lactic acid) composites for high thermal stability. Fibers Polym. 14 (6), 1001 — 1005.

Chuayjuljit, S., Hosililak, S., Athisart, A., 2009a. Thermoplastic cassava starch/sorbitol-modi- fied montmorillonite nanocomposites blended with low density polyethylene: properties and biodegradability study. J. Met. Mater. Miner. 19 (1), 59—65.

Chuayjuljit, S., Su-uthai, S., Charuchinda, S., 2009b. Poly (vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study. Waste Manage. Res. 28, 109—117.

Dos Santos, F.A., Tavares, M.I.B., 2015. Development of biopolymer/cellulose/silica nanostructured hybrid materials and their characterization by NMR relaxometry. Polym. Test. 47, 92—100.

Etang Ayuk, J., Mathew, A.P., Oksman, K., 2009. The effect of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate nanocomposites. J. Appl. Polym. Sci. 114 (5), 2723—2730.

Feng Zuo, Y., Gu, J., Qiao, Z., Tan, H., Cao, J., Zhang, Y., 2015. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites. Int. J. Biol. Macromol. 72, 391—402.

Herrera, N., Mathew, A.P., Oksman, K., 2015a. Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos. Sci. Technol. 106, 149—155.

Herrera, N., Salaberria, A.M., Mathew, A.P., Oksman, K., 2015b. Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: Effects on mechanical, thermal and optical properties. Compos. Part A Appl. Sci. Manuf.http://dx.doi.org/10.1016/j.compositesa.2015.05.024.

Hong, J., Kim, D.S., 2013. Preparation and physical properties of polylactide/cellulose nano- whisker/nanoclay composites. Polym. Compos. 34 (2), 293—298.

Hossain, K.M.Z., Ahmed, I., Parsons, A.J., Scotchford, C.A., Walker, G.S., Thielemans, W., et al., 2012a. Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly (lactic acid). J. Mater. Sci. 47 (6), 2675—2686.

Hossain, K.M.Z., Jasmani, L., Ahmed, I., Parsons, A.J., Scotchford, C.A., Thielemans, W., et al., 2012b. High cellulose nanowhisker content composites through cellosize bonding. Soft Matter. 8 (48), 12099—12110.

Issaadi, K., Habi, A., Grohens, Y., Pillin, I., 2015. Effect of the montmorillonite intercalant and anhydride maleic grafting on polylactic acid structure and properties. Appl. Clay Sci. 107, 62—69.

Jiang, L., Zhang, J., Wolcott, M.P., 2007. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer. 48 (26), 7632—7644.

Kemala, T., Budianto, E., Soegiyono, B., 2012. Preparation and characterization of microspheres based on blend of poly (lactic acid) and poly (e-caprolactone) with poly (vinyl alcohol) as emulsifier. Arab. J. Chem. 5 (1), 103 — 108.

Lewandowska, K., Sionkowska, A., Kaczmarek, B., Furtos, G., 2014. Characterization of chitosan composites with various clays. Int. J. Biol. Macromol. 65, 534—541.

Lim, L.T., Auras, R., Rubino, M., 2008. Processing technologies for poly (lactic acid). Progr. Polym. Sci. 33 (8), 820—852.

Liu, D., Sun, X., Tian, H., Maiti, S., Ma, Z., 2013c. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose. 20 (6), 2981—2989.

Liu, M., Zhang, Y., Zhou, C., 2013b. Nanocomposites of halloysite and polylactide. Appl. Clay Sci. 75, 52—59.

Liu, R., Luo, S., Cao, J., Peng, Y., 2013a. Characterization of organo-montmorillonite (OMMT) modified wood flour and properties of its composites with poly (lactic acid). Compos. Part A Appl. Sci. Manuf. 51, 33—42.

Ljungberg, N., Wesslen, B., 2005. Preparation and properties of plasticized poly (lactic acid) films. Biomacromolecules. 6 (3), 1789—1796.

Oksman, K., Mathew, A.P., 2014. Melt compounding process of cellulose nanocomposites. In: Oksman, K., Mathew, A.P., Bismarck, A., Rojas, O., Sain, M. (Eds.), Handbook of Green Materials, vol. 2. World Scientific Publishing, Singapore, pp. 53—68, 2014.

Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I., 2006. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Technol. 66 (15), 2776—2784.

Pandey, J.K., Chu, W.S., Kim, C.S., Lee, C.S., Ahn, S.H., 2009. Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Compos. Part B Eng. 40 (7), 676—680.

Petersson, L., Oksman, K., 2006. Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos. Sci. Technol. 66 (13), 2187—2196.

Petersson, L., Kvien, I., Oksman, K., 2007. Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Technol. 67 (11), 2535-2544.

Qu, P., Gao, Y., Wu, G., Zhang, L., 2010. Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources. 5 (3), 1811-1823.

Ray, S.S., Okamoto, M., 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progr. Polym. Sci. 28 (11), 1539-1641.

Revol, J.F., Godbout, L., Dong, X.M., Gray, D.G., Chanzy, H., Maret, G., 1994. Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liquid Crystals. 16 (1), 127-134.

Singla, P., Mehta, R., Upadhyay, S.N., 2014. Microwave assisted in situ ring-opening polymerization of polylactide/clay nanocomposites: effect of clay loading. Appl. Clay Sci. 95, 67-73.

Thellen, C., Orroth, C., Froio, D., Ziegler, D., Lucciarini, J., Farrell, R., et al., 2005. Influence of montmorillonite layered silicate on plasticized poly (l-lactide) blown films. Polymer. 46 (25), 11716-11727.

Wang, Y., Cao, X., Zhang, L., 2006. Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol. Biosci. 6 (7), 524-531.

Wu, C.S., Liao, H.T., 2005. A new biodegradable blends prepared from polylactide and hyaluronic acid. Polymer. 46 (23), 10017-10026.

Zhang, C., Liu, R., Xiang, J., Kang, H., Liu, Z., Huang, Y., 2014. Dissolution mechanism of cellulose in N, N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J. Phys. Chem. B. 118 (31), 9507-9514.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel