The authors are grateful for the financial support from NSERC/FPInnovations Industrial Research Chair Program in Forest Biorefinery and the Ontario Research Fund-Research Excellence (ORF-RE) from Ministry of Economic Development and Innovation, as well as the Canada Foundation for Innovation Leaders Opportunity Fund. Support from the industrial partners, including FPInnovations, Arclin Canada, BioIndustrial Innovation Centre, and CENNATEK, is also acknowledged.


[1] Huber GW, et al. Production of liquid alkanes by aqueous-phase processing of biomass- derived carbohydrates. Science 2005;308(5727):1446—50.

[2] Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 2006;106(9):4044—98.

[3] Stevens ES. Green plastics: an introduction to the new science of biodegradable plastics. Princeton, NJ: Princeton University Press; 2002.

[4] Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev Columbus 2007;107(6):2411—502.

[5] Gallezot P. Process options for converting renewable feedstocks to bioproducts. Green Chem 2007;9(4):295—302.

[6] Wood SM, Layzell DB. A Canadian biomass inventory: feedstocks for a bio-based economy. BIOCAP Canada Foundation; 2003. p. 18—24.

[7] Hsu TA, Ladisch R, Tsao GT. Alcohol from cellulose. Chem Intermediat 1980;May (3):315—19.

[8] Tejado A, et al. Physico-chemical characterization of lignins from different sources for use in phenol—formaldehyde resin synthesis. Bioresour Technol 2007;98(8):1655—63.

[9] Effendi A, Gerhauser H, Bridgwater AV. Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sustain Energy Rev 2008;12 (8):2092—116.

[10] McLaren J. The technology roadmap for plant/crop-based renewable resources 2020. Golden, CO, USA: National Renewable Energy Lab.; 1999.

[11] Raquez JM, et al. Thermosetting (bio) materials derived from renewable resources: A critical review. Progress in Polymer Science 2010;35(4):487—509.

[12] Kaplan DL. Introduction to biopolymers from renewable resources. New York: Springer; 1998.

[13] Kumar R, et al. Adhesives and plastics based on soy protein products. Industrial Crops Products 2002;16(3):155—72.

[14] Nair CP. Advances in addition-cure phenolic resins. Progr Polym Sci 2004;29

(5) :401—98.

[15] Ghosh NN, Kiskan B, Yagci Y. Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Progr Polym Sci 2007;32(11):1344—91.

[16] Lin SY, Lebo SE. Lignin. Kirk-Othmer encyclopedia of chemical technology. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 1995.

[17] Sena-Martins G, Almeida-Vara E, Duarte JC. Eco-friendly new products from enzymatically modified industrial lignins. Industrial Crops Prod 2008;27(2):189—95.

[18] Tejado A, et al. Lignins for phenol replacement in novolac—type phenolic formulations. II. Flexural and compressive mechanical properties. J Appl Polym Sci 2008;107 (1):159—65.

[19] Khan MA, Ashraf SM, Malhotra VP. Development and characterization of a wood adhesive using bagasse lignin. Int J Adhes Adhes 2004;24(6):485—93.

[20] Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 2001;79(3):277—99.

[21] Lora JH, Glasser WG. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 2002;10(1-2):39—48.

[22] Zhang W, et al. Preparation and properties of lignin—phenol—formaldehyde resins based on different biorefinery residues of agricultural biomass. Industrial Crops Prod 2013;43:326—33.

[23] Podschun J, Saake B, Lehnen R. Reactivity enhancement of organosolv lignin by phe- nolation for improved bio-based thermosets. Eur Polym J 2015;67:1 —11.

[24] Cetin NS, Ozmen N. Use of organosolv lignin in phenol—formaldehyde resins for particleboard production: I. Organosolv lignin modified resins. Int J Adhes Adhes 2002;22

(6) :477—80.

[25] Alonso MV, et al. Characterization and structural modification of ammonic lignosulfo- nate by methylolation. J Appl Polym Sci 2001;82(11):2661—8.

[26] Perez JM, et al. Cure kinetics of lignin-novolac resins studied by isoconversional methods. Thermochim Acta 2009;487(1-2):39—42.

[27] Rautio P, et al. Bitter problems in ecological feeding experiments: Commercial tannin preparations and common methods for tannin quantifications. Biochem Syst Ecol 2007;35(5):257—62.

[28] Martinez S. Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Mater Chem Phys 2003;77(1):97—102.

[29] Pena C, et al. Synthesis and characterization of phenolic novolacs modified by chestnut and mimosa tannin extracts. J Appl Polym Sci 2006;100(6):4412—19.

[30] Kim S, Kim H-J. Curing behavior and viscoelastic properties of pine and wattle tannin- based adhesives studied by dynamic mechanical thermal analysis and FT-IR-ATR spectroscopy. J Adhes Sci Technol 2003;17(10):1369—83.

[31] Sowunmi S, et al. Differential scanning calorimetry of hydrolysed mangrove tannin. Polym Int 2000;49(6):574—8.

[32] Pizzi A. Handbook of Adhesive Technology. In: Pizzi A, Mittal KL, editors. Natural phenolic adhesives II: Lignin. New York: Marcel Dekker; 2003. p. 1031.

[33] Yadav R, et al. Optimization of the process variables for the synthesis of cardanol- based novolac-type phenolic resin using response surface methodology. Eur Polym J 2007;43(8):3531—7.

[34] Devi A, Srivastava D. Cardanol-based novolac-type phenolic resins. I. A kinetic approach. J Appl Polym Sci 2006;102(3):2730—7.

[35] Campaner P, et al. Cardanol-based novolac resins as curing agents of epoxy resins. J Appl Polym Sci 2009;114(6):3585—91.

[36] Cardona F, Kin-Tak AL, Fedrigo J. Novel phenolic resins with improved mechanical and toughness properties. J Appl Polym Sci 2012;123(4):2131—9.

[37] Rao BS, Palanisamy A. Synthesis of bio based low temperature curable liquid epoxy, benzoxazine monomer system from cardanol: Thermal and viscoelastic properties. Eur Polym J 2013;49(8):2365—76.

[38] Devi A, Srivastava D. Studies on the blends of cardanol-based epoxidized novolac type phenolic resin and carboxyl-terminated polybutadiene (CTPB), I. Mater Sci Eng A 2007;458(1):336—47.

[39] da Silva Santos R, et al. Cardanol—formaldehyde thermoset composites reinforced with buriti fibers: preparation and characterization. Compos Part A Appl Sci Manuf 2010;41 (9):1123—9.

[40] Barreto ACH, et al. Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos Part A Appl Sci Manuf 2011;42 (5):492—500.

[41] Calc) E, et al. Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem 2007;9


[42] Srivastava R, Srivastava D. Preparation and thermo-mechanical characterization of novel epoxy resins using renewable resource materials. J Polym Environ 2014;1 —11.

[43] Amen-Chen C, et al. Softwood bark pyrolysis oil-PF resols. Part 1. Resin synthesis and OSB mechanical properties. Holzforschung 2002;56(2):167—75.

[44] Amen-Chen C, Riedl B, Roy C. Softwood bark pyrolysis oil-PF resols. Part 2. Thermal analysis by DSC and TG. Holzforschung 2002;56(3):273—80.

[45] Amen-Chen C, et al. Softwood bark pyrolysis oil-PF resols. Part 3. Use of propylene carbonate as resin cure accelerator. Holzforschung 2002;56(3):281—8.

[46] Demirba§ A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manage 2000;41(6):633—46.

[47] Behrendt F, et al. Direct liquefaction of biomass. Chem Eng Technol 2008;31 (5):667—77.

[48] Kunaver M, et al. Application of liquefied wood as a new particle board adhesive system. Bioresour Technol 2010;101(4):1361 —8.

[49] Cheng S, et al. Highly efficient liquefaction of woody biomass in hot-compressed alcohol—water co-solvents. Energy & Fuels 2010;24(9):4659—67.

[50] Cheng S, et al. Use of biocrude derived from woody biomass to substitute phenol at a high-substitution level for the production of biobased phenolic resol resins. J Appl Polym Sci 2011;121(5):2743—51.

[51] Onay O, Kockar OM. Pyrolysis of rapeseed in a free fall reactor for production of biooil. Fuel 2006;85(12):1921—8.

[52] Lira CS, et al. Fast pyrolysis of Amazon tucuma (Astrocaryum aculeatum) seeds in a bubbling fluidized bed reactor. J Anal Appl Pyrol 2013;99:23—31.

[53] Xu C, Lad N. Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water. Energy Fuels 2007;22(1):635—42.

[54] Roy C, Lu X, and Pakdel H. Process for the production of phenolic-rich pyrolysis oils for use in making phenol-formaldehyde resole resins; 2000, Google Patents.

[55] Himmelblau A. Method and apparatus for producing water-soluble resin and resin product made by that method; 1991, Google Patents.

[56] Freel B, Graham RG, Giroux R. Natural resin formulations; 2005, Google Patents.

[57] Mourant D, et al. Phenol—formaldehyde—pyrolytic oil resins for wood preservation: A rheological study. J Appl Polym Sci 2007;106(2):1087—94.

[58] Lu K-T, Wu L-Y. Substitution of phenol in phenol-formaldehyde (PF) resins by wood tar for plywood adhesives. Holzforschung 2013;67(4):413 —19.

[59] Alonso MV, et al. Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresour Technol 2005;96(9):1013 —18.

[60] Lee SH, Teramoto Y, Shiraishi N. Acid-catalyzed liquefaction of waste paper in the presence of phenol and its application to Novolak-type phenolic resin. J Appl Polym Sci 2002;83(7):1473—81.

[61] Alonso MV, et al. Determination of curing kinetic parameters of lignin—phenol—formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochim Acta 2004;419(1):161—7.

[62] Ferhan M, Yan N, Sain M. A new method for demethylation of lignin from woody biomass using biophysical methods. J Chem Eng Process Technol 2013;4:160.

[63] Cheng S, et al. Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymer- ized lignin as a substitute for phenol at a high substitution ratio. Industrial Crops Prod 2013;44:315—22.

[64] Frollini E, et al. Plastics and composites from lignophenols. In: Wallenberger FTWNE, editor. Natural Fibers, Plastics and Composites. New York: Springer; 2004. p. 193—225.

[65] Elmer OC. Glass cord adhesives comprising vinyl pyridine terpolymer/lignin sulfonate- resorcinol-formaldehyde reaction product; method of use and composite article; 1977, Google Patents.

[66] Sarkar S, Adhikari B. Jute felt composite from lignin modified phenolic resin. Polym Compos 2001;22(4):518—27.

[67] Park Y, Doherty WOS, Halley PJ. Developing lignin-based resin coatings and composites. Industrial Crops Prod 2008;27(2):163—7.

[68] Ramires EC, et al. Biobased composites from glyoxal—phenolic resins and sisal fibers. Bioresour Technol 2010;101(6):1998—2006.

[69] Kowatsch S. Formaldehyde. In: Pilato L, editor. Phenolic Resins: A Century of Progress. Berlin: Springer; 2010. p. 25—40.

[70] Hahnenstein I, et al. 1H- and 13C-NMR spectroscopic study of chemical equilibria in solutions of formaldehyde in water, deuterium oxide, and methanol. Ind Eng Chem Res 1994;33(4):1022—9.

[71] Patel AU, Soni SS, Patel HS. Synthesis, characterization and curing of o-cresol—furfural resins. International Journal of Polymeric Materials 2009;58(10):509—16.

[72] Oliveira FB, et al. Phenol—furfural resins to elaborate composites reinforced with sisal fibers—molecular analysis of resin and properties of composites. J Appl Polym Sci 2008;109(4):2291—303.

[73] Patel RD, et al. Kinetic investigation on the curing of phenol-furfural resin by differential scanning calorimetry. J Appl Polym Sci 1987;34(7):2583—9.

[74] Amaral-Labat GA, et al. Environment-friendly soy flour-based resins without formaldehyde. J Appl Polym Sci 2008;108(1):624—32.

[75] Lei H, Pizzi A, Du G. Environmentally friendly mixed tannin/lignin wood resins. J Appl Polym Sci 2008;107(1):203—9.

[76] Yuan Z, Zhang Y, Xu C. Synthesis and thermomechanical property study of Novolac phenol-hydroxymethyl furfural (PHMF) resin. RSC Adv 2014;4:31829—35.

[77] Zhang Y, Yuan Z, Xu CC. Engineering biomass into formaldehyde-free phenolic resin for composite materials. AICHE J 2015;61:1275—83.

[78] Czub P. A comparison of the syntheses of high molar mass epoxy resins on the basis of two groups of modified vegetable oils. Macromolecular symposia.. Wiley Online Library; 2009.

[79] El Mansouri NE, Yuan Q, Huang F. Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. BioResources 2011;6(3):2647—62.

[80] Giiner FS, Yagci Y, Erciyes AT. Polymers from triglyceride oils. Progr Polym Sci 2006;31(7):633—70.

[81] Wang D, Sun G. Novel polymer blends from polyester and bio-based cellulose ester. J Appl Polym Sci 2011;119(4):2302—9.

[82] Kishi H, Fujita A. Wood-based epoxy resins and the ramie fiber reinforced composites. Environ Eng Manage J 2008;7(5):517—23.

[83] Liang G, Chandrashekhara K. Cure kinetics and rheology characterization of soy-based epoxy resin system. J Appl Polym Sci 2006;102(4):3168—80.

[84] Shogren RL, et al. Biodegradation behavior of some vegetable oil-based polymers. J Polym Environ 2004;12(3):173—8.

[85] Koike T. Progress in development of epoxy resin systems based on wood biomass in Japan. Polym Eng Sci 2012;52(4):701 —17.

[86] Liu Z, et al. “Green” composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites. J Agric Food Chem 2006;54(6):2134—7.

[87] Lligadas G, et al. Bionanocomposites from renewable resources: epoxidized linseed oil- polyhedral oligomeric silsesquioxanes hybrid materials. Biomacromolecules 2006;7 (12):3521—6.

[88] Sun H, et al. DSC study on the effect of cure reagents on the lignin base epoxy cure reaction. J Appl Polym Sci 2007;105(4):2332—8.

[89] El Mansouri NE, Yuan Q, Huang F. Synthesis and characterization of kraft lignin- based epoxy resins. BioResources 2011;6(3):2492—503.

[90] Delmas GH, et al. Biolignin™ based epoxy resins. J Appl Polym Sci 2013;127(3): 1863—72.

[91] Zhao B, et al. Synthesis of lignin base epoxy resin and its characterization. J Mater Sci Lett 2001;20(9):859—62.

[92] Sasaki C, et al. Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Industrial Crops Prod 2013;43:757—61.

[93] Ferdosian F, et al. Synthesis of lignin-based epoxy resins: optimization of reaction parameters using response surface methodology. RSC Adv 2014;4(60):31745—53.

[94] Scott G. Polymers and the Environment. Royal Society of Chemistry; 1999.

[95] Narayan R, et al. Synthesis and characterization of crosslinked polyurethane dispersions based on hydroxylated polyesters. J Appl Polym Sci 2006;99(1):368—80.

[96] Caraculacu A, Coseri S. Isocyanates in polyaddition processes. Structure and reaction mechanisms. Progr Polym Sci 2001;26(5):799—851.

[97] Pan X, Saddler JN. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol Biofuels 2013;6(1):12.

[98] da Silva EB, et al. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Design 2009;87(9):1276—92.

[99] Mahmood N, et al. Production of polyols via direct hydrolysis of kraft lignin: Effect of process parameters. Bioresour Technol 2013;139:13—20.

[100] Xue B-L, Wen J-L, Sun R-C. Lignin-based rigid polyurethane foam reinforced with pulp fiber: synthesis and characterization. ACS Sustain Chem Eng 2014;2 (6):1474—80.

[101] Belgacem MN, Gandini A. Monomers, polymers and composites from renewable resources. Amsterdam: Elsevier; 2011.

[102] Hatakeyama H, Hatakeyama T. Lignin structure, properties, and applications, in. Biopolymers. New York: Springer; 2010. p. 1—63.

[103] Cateto CA, et al. Kinetic study of the formation of lignin-based polyurethanes in bulk. React Funct Polym 2011;71(8):863—9.

[104] Cateto CA, et al. Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res 2009;48(5):2583—9.

[105] Nadji H, et al. Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol Mater Eng 2005;290(10):1009—16.

[106] Li Y, Ragauskas AJ. Kraft lignin-based rigid polyurethane foam. J Wood Chem Technol 2012;32(3):210—24.

[107] Hatakeyama T, et al. Glass transition of rigid polyurethane foams derived from sodium lignosulfonate mixed with diethylene, triethylene and polyethylene glycols. Thermochim Acta 2004;416(1):29—33.

[108] Bonini C, et al. Polyurethanes and polyesters from lignin. J Appl Polym Sci 2005;98 (3):1451—6.

[109] Cinelli P, Anguillesi I, Lazzeri A. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur Polym J 2013;49(6):1174—84.

[110] Saito T, et al. Development of lignin-based polyurethane thermoplastics. RSC Adv. 2013;3(44):21832—40.

[111] Nakajima-Kambe T, et al. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 1999;51 (2):134—40.

[112] Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev 2008;14(1):3—17.

[113] Wang W, et al. Synthesis and characterization of a novel biodegradable, thermoplastic polyurethane elastomer. J Polym Sci Part A Polym Chem 2006;44(19):5505—12.

[114] Eceiza A, et al. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polym Eng Sci 2008;48(2):297—306.

[115] Dwan’isa J-PL, et al. Biobased polyurethane and its composite with glass fiber. J Mater Sci 2004;39(6):2081—7.

[116] Corcuera M, et al. Microstructure and properties of polyurethanes derived from castor oil. Polym Degrad Stab 2010;95(11):2175—84.

[117] Singh K, Sinha TJM, Srivastava S. Functionalized nanocrystalline cellulose: smart biosorbent for decontamination of arsenic. Int J Miner Process 2015;139:51-63.

[118] Ma P, et al. Reinforcement of transparent ethylene-co-vinyl acetate rubber by nanocrystalline cellulose. Eur Polym J 2015;66:47-56.

[119] Szczesniak L, Rachocki A, Tritt-Goc J. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 2008;15(3):445-51.

[120] Saikia CN, et al. Esterification of high a-cellulose extracted from Hibiscus cannabinus L. Industrial Crops Prod 1995;4(4):233-9.

[121] Biswas A, et al. Iodine catalyzed esterification of cellulose using reduced levels of solvent. Carbohydrate Polym 2007;68(3):555-60.

[122] Aoki D, Teramoto Y, Nishio Y. SH-containing cellulose acetate derivatives: preparation and characterization as a shape memory-recovery material. Biomacromolecules 2007;8(12):3749-57.

[123] Jayalakshmi A, et al. Epoxy functionalized poly (ether-sulfone) incorporated cellulose acetate ultrafiltration membrane for the removal of chromium ions. Sep Purif Technol 2012;90:120-32.

[124] Irvine GJ, et al. Ion selective permeation through cellulose acetate membranes in forward osmosis. Environ Sci Technol 2013;47(23):13745-53.

[125] Nguyen TPN, et al. Preparation of cellulose triacetate/cellulose acetate (CTA/CA)- based membranes for forward osmosis. J Memb Sci 2013;433:49-59.

[126] Bogard MA, Godfrey DA, Fredrick TJ. Cellulose acetate film for use in liquid crystal displays. Google Patents 2003;1-6.

[127] Shimao M. Biodegradation of plastics. Curr Opin Biotechnol 2001;12(3):242-7.

[128] Scott G, Wiles DM. Programmed-life plastics from polyolefins: a new look at sustainability. Biomacromolecules 2001;2(3):615-22.

[129] Tian H, et al. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Progr Polym Sci 2012;37(2):237-80.

[130] Poirier Y, Nawrath C, Somerville C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Nat Biotechnol 1995;13(2):142-50.

[131] Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules 2005;6(2):538-46.

[132] Mecking S. Nature or petrochemistry?—biologically degradable materials. Angew Chem Int Ed 2004;43(9):1078-85.

[133] Hakkarainen M, Karlsson S, Albertsson A-C. Rapid (bio) degradation of polylactide by mixed culture of compost microorganisms—low molecular weight products and matrix changes. Polymer (Guildf) 2000;41(7):2331-8.

[134] Itavaara M, Karjomaa S, Selin J-F. Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 2002;46(6):879-85.

[135] Narayanan N, Roychoudhury PK, Srivastava A. L (1) lactic acid fermentation and its product polymerization. Electron J Biotechnol 2004;7(2):167-78.

[136] Gupta B, Revagade N, Hilborn J. Poly (lactic acid) fiber: an overview. Progr Polym Sci 2007;32(4):455-82.

[137] Yamane H, Sasai K. Effect of the addition of poly (D-lactic acid) on the thermal property of poly (L-lactic acid). Polymer (Guildf) 2003;44(8):2569-75.

[138] Gupta A, Kumar V. New emerging trends in synthetic biodegradable polymers-Polylactide: a critique. Eur Polym J 2007;43(10):4053-74.

[139] Lasprilla AJ, et al. Poly-lactic acid synthesis for application in biomedical devices— a review. Biotechnol Adv 2012;30(1):321-8.

[140] Sinha Ray S. Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc Chem Res 2012;45(10):1710-20.

[141] Chen Y, et al. Natural fibers for automotive nonwoven composites. J Industrial Text 2005;35(1):47-62.

[142] Huda MS, et al. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibers. Compos Sci Technol 2008;68(2):424-32.

[143] Jonoobi M, et al. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 2010;70 (12):1742-7.

[144] Iwatake A, Nogi M, Yano H. Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 2008;68(9):2103-6.

[145] Bordes P, Pollet E, Avtsrous L. Nano-biocomposites: biodegradable polyester/nanoclay systems. Progr Polym Sci 2009;34(2):125-55.

[146] Armentano I, et al. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 2010;95(11):2126-46.

[147] Ren J, et al. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly (lactic acid) and poly (butylene adipate-co-terephthal- ate). Carbohydrate Polym 2009;77(3):576-82.

[148] Savenkova L, et al. Mechanical properties and biodegradation characteristics of PHB- based films. Process Biochem 2000;35(6):573-9.

[149] Rieger B, et al. Synthetic Biodegradable Polymers, Vol. 245. New York: Springer Science & Business Media; 2012.

[150] Bastarrachea L, et al. Biodegradable poly (butylene adipate-co-terephthalate) films incorporated with nisin: characterization and effectiveness against Listeria innocua. J Food Sci 2010;75(4):E215-24.

[151] Chivrac F, Pollet E, Averous L. Nonisothermal crystallization behavior of poly (butylene adipate-co-terephthalate)/clay nano-biocomposites. JPolym Sci Part B Polym Phys 2007;45(13):1503-10.

[152] Brito GF, et al. Polylactide/biopolyethylene bioblends. Polimeros 2012;22(5):427-9.

[153] Boaen NK, Hillmyer MA. Post-polymerization functionalization of polyolefins. Chem Soc Rev 2005;34(3):267-75.

[154] Castro D, Ruvolo-Filho A, Frollini E. Materials prepared from biopolyethylene and curaua fibers: composites from biomass. Polym Test 2012;31(7):880-8.

[155] Kuciel S, Jakubowska P, Kuzniar P. A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Compos Part B Eng 2014;64:72-7.

[156] Spiridon I. I. Natural fiber-polyolefin composites. Mini-review. Cell Chem Technol 2014;48(7-8):599-611.

[157] Iyer KA, Flores AM, Torkelson JM. Comparison of polyolefin biocomposites prepared with waste cardboard, microcrystalline cellulose, and cellulose nanocrystals via solid- state shear pulverization. Polymer (Guildf) 2015;75:78-87.

< Prev   CONTENTS   Source   Next >