References

[1] Haykin, S. and Van Veen, B. (2014) Signals and Systems, John Wiley & Sons, Inc, Hoboken, NJ.

[2] Philips, C., Parr, J. and Riskin, E. (2014) Signals, Systems and Transforms, 5th edn, Prentice-Hall.

[3] Oppenheim, A. and Willsky, A. (1996) Signals and Systems, 2nd edn, Prentice-Hall.

[4] Sundararajan, D. (2008) A Practical Approach to Signals and Systems, John Wiley & Sons, Inc, Hoboken, NJ.

[5] Gharaibeh, K. (2012) Nonlinear Distortion in Wireless Systems, John Wiley & Sons, Inc, Hoboken, NJ.

[6] Vuolevi, J.H.K., Rahkonen, T. and Manninen, J.P.A. (2001) Measurement technique for characterizing memory effects in RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 49 (8), 1383-1389.

[7] Vuolevi, J.H.K. and Rahkonen, T. (2002) Distortion in RF Power Amplifiers, Artech House.

[8] Vuolevi J.H.K. , Analysis, measurement and cancellation of the bandwidth and amplitude dependence of intermodulation distortion in RF power amplifiers. Doctoral thesis, University of Oulu, Oulu, 2001.

[9] Benedetto, S. and Biglieri, E. (1999) Principles of Digital Transmission with Wireless Applications, Plenum Series in Telecommunications, Kluwer Academic Publishers.

[10] Haykin, S. (2013) Communications Systems, 5th edn, John Wiley & Sons, Inc, Hoboken, NJ.

[11] Maas, S. (1995) Third-order intermodulation distortion in cascaded stages. IEEE Microwave and Guided Wave Letters, 5 (6), 189-191.

[12] T. Rahkonen and J. H. K. Vuolevi, Memory effects in analog predistorting linearizing systems. Proceedings 1999 NORCHIP Conference, Oslo, Norway, November 1999, pp. 114-119, 1999.

[13] Maas, S. (1997) Nonlinear Microwave Circuits, IEEE Press, Piscataway, NJ.

[14] Saleh, A.A.M. (1981) Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Transactions on Communications, 29 (11), 1715-1720.

[15] R. Raich, and G. T. Zhou, On the modeling of memory nonlinear effects of power amplifiers for communication applications. IEEE Digital Signal Processing Workshop, Pine Mountain, GA, October 2002, pp. 7-10, 2002.

[16] Y. Zhu, J. K. Twynam, M. Yagura, M. Hasegawa, T. Hasegawa, Y. Eguchi, et al., Analytical model for electrical and thermal transients of self-heating semiconductor devices, IEEE Transactions on Microwave Theory and Techniques, 46, 12, 2258-2263, 1998.

[17] Raab, F.H., Asbeck, P., Cripps, S. et al. (2002) Power amplifiers and transmitters for RF and microwave. IEEE Transactions on Microwave Theory and Techniques, 50 (3), 814-826.

[18] Clark, C.J., Chrisikos, G., Muha, M.S. etal. (1998) Time-domain envelope measurement technique with application to wideband power amplifier modeling. IEEE Transactions on Microwave Theory and Techniques, 46 (12), 2531-2540.

[19] Gonzalez, G. (1997) Microwave Transistor Amplifiers: Analysis and Design, Prentice-Hall, Englewood Cliffs, NJ.

[20] J. H. K. Vuolevi and T. Rahkonen, The effects of source impedance on the linearity of BJT common-emitter amplifiers. Digest 2000 IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, May 2000, pp. 197-200, 2000.

[21] Kim, J. and Konstantinou, K. (2001) Digital predistortion of wideband signals based on power amplifier model with memory. Electronics Letters, 37 (23), 1417-1418.

[22] Bosch, W. and Gatti, G. (1989) Measurement and simulation of memory effects in predistortion linearizers. IEEE Transactions on Microwave Theory and Techniques, 37 (12), 1885-1890.

[23] E. Schurack, W. Rupp, T. Latzel and A. Gottwald, Analysis and measurement of nonlinear effects in power amplifiers caused by thermal power feedback. Digest IEEE International Symposium on Circuits and Systems, San Diego, CA, May 1992, pp. 758-761, 1992.

[24] T. Hopkins and R. Tiziani, Transient thermal impedance considerations in power semiconductor applications. Proceedings in Automotive Power Electronics, Dearborn, MI, August 1989, pp. 89-97, 1989.

[25] N. Le Gallou, J. M. Nebus, E. Ngoya, and H. Buret, Analysis of low frequency memory and influence on solid state HPA intermodulation characteristics. Digest IEEE International Microwave Symposium, Phoenix, AZ, June 2001, pp. 979-982, 2001.

[26] Fox, R.S. and Zweidinger, D. (1993) The effects of BJT self-heating on circuit behavior. IEEE Journal of Solid-State Circuits, 28 (6), 678-685.

[27] Boumaiza, S. and Ghannouchi, F.M. (2003) Thermal memory effects modeling and compensation in RF PAs and predistortion linearizers. IEEE Transactions on Microwave Theory and Techniques, 51 (12), 2427-2433.

[28] Ermolova, N.Y. (2001) Spectral analysis of nonlinear amplifier based on the complex gain Taylor series expansion. IEEE Communications Letters, 5 (12), 465-467.

[29] Benedetto, S., Biglieri, E. and Daffara, R. (1979) Modeling and performance evaluation of nonlinear satellite links - a Volterra series approach. IEEE Transactions on Aerospace and Electronic Systems, 15 (4), 494-507.

[30] Eun, C. and Powers, E.J. (1997) A new Volterra predistorter based on the indirect learning architecture. IEEE Transactions on Signal Processing, 45 (1), 223 - 228.

[31] A. Zhu and T. J. Brazil, An adaptive Volterra predistorter for the linearization of high power amplifiers. Digest IEEE International Microwave Symposium, Seattle, WA, June 2002, pp. 461-464, 2002.

[32] Zhu, A., Pedro, J.C. and Brazil, T.J. (2006) Dynamic deviation reduction based Volterra behavioral modeling of RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 54 (12), 4323-4332.

[33] Crespo-Cadenas, C., Reina-Tosina, J., Madero-Ayora, M.J. and Munoz-Cruzado, J. (2010) A new approach to pruning Volterra models for RF power amplifiers. IEEE Transactions on Signal Processing, 58 (4), 2113-2120.

 
Source
< Prev   CONTENTS   Source   Next >