Menu
Home
Log in / Register
 
Home arrow Health arrow DNA Modifications in the Brain. Neuroepigenetic Regulation of Gene Expression
Source

REFERENCES

Alseth, I., Dalhus, B., & Bjoras, M. (2014). Inosine in DNA and RNA. Current Opinion in Genetics & Development, 26(26C), 116-123.

Asgar Abbas, K., Monika, K., Honorata, C., & Matthias, B. (2014). Crystal structure of the 5hmC specific

endonuclease PvuRts1I. Nucleic Acids Research, 42(9), 5929-5936.

Baker-Andresen, D., Zhao, Q., Li, X., Jupp, B., Chesworth, R., Lawrence, A. J., et al. (2015). Persistent variations in neuronal DNA methylation following cocaine self-administration and protracted abstinence in

mice. Neuroepigenetics, 4, 1—11. http://dx.doi.org/10.1016/j.nepig.2015.10.001.

Bird, A. P (1978). Use of restriction enzymes to study eukaryotic DNA methylation: II. Journal of Molecular Biology, 118(1), 27-47.

Bird, A. P, & Southern, E. M. (1978). Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. Journal of Molecular Biology, 118(1), 27-47.

Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., et al. (2009). Breaking the code of DNA binding specificity ofTAL-type III effectors. Science, 326(5959), 1509-1512. http://dx.doi.org/ 10.1126/science.1178811.

Brinkman, A. B., Simmer, F., Ma, K., Kaan, A., Zhu, J., & Stunnenberg, H. G. (2010). Whole-genome DNA methylation profiling using MethylCap-seq. Methods, 52(3), 232-236. http://dx.doi.org/

10.1016/j.ymeth.2010.06.012.

Carless, M. A. (2014). Determination of DNA methylation levels using Illumina HumanMethyl-

ation450 BeadChips. Methods in Molecular Biology, 1288, 143-192. http://dx.doi.org/10.1007/ 978-1-4939-2474-5_10.

Chao, M.-R., Wang, C.-J., Yang, H.-H., Chang, L. W, & Hu, C.-W (2005). Rapid and sensitive quantification of urinaryN7-methylguanine by isotope-dilution liquid chromatography/electrospray ionization tandem mass spectrometry with on-line solid-phase extraction. Rapid Communications in Mass Spectrometry, 19(17), 2427-2432. http://dx.doi.org/10.1002/rcm.2082.

Consden, R., Gordon, A. H., & Martin, A. J. (1947). Gramicidin S: the sequence of the amino-acid residues. The Biochemical Journal, 41(4), 596-602.

Dai, Z., Weichenhan, D., Wu,Y. Z., Hall, J. L., Rush, L. J., Smith, L. T., et al. (2002). An AscI boundary library for the studies of genetic and epigenetic alterations in CpG islands. Genome Research, 12(10), 1591-1598.

David, S. S., O’Shea, V L., & Kundu, S. (2007). Base-excision repair of oxidative DNA damage. Nature, 447(7147), 941-950. http://dx.doi.org/10.1038/nature05978.

Evelina, Z., & Giedrius, S. (2014). Chemical display of pyrimidine bases flipped out by modification-dependent restriction endonucleases of MspJI and PvuRts1I families. PLoS One, 9(12), e114580.

Flusberg, B. A., Webster, D. R., Lee, J. H., Travers, K. J., Olivares, E. C., Clark, T. A., et al. (2010). Direct detection of DNA methylation during single-molecule, real-time sequencing. Nature Methods, 7(6), 461-465. http://dx.doi.org/10.1038/nmeth.1459.

Fraga, M. F., & Manel, E. (2002). DNA methylation: a profile of methods and applications. BioTechniques, 33(3), 632-649.

Friso, S., Choi, S.-W., Dolnikowski, G. G., & Selhub, J. (2002). A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Analytical Chemistry, 74(17), 4526-4531. http://dx.doi.org/10.1021/ac020050h.

Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F, Grigg, G. W, et al. (1992). A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences of the United States of America, 89(5), 1827-1831.

Fu,Y., Luo, G.-Z., Chen, K., Deng, X.,Yu, M., Han, D., et al. (2015). N6-methyldeoxyadenosine marks active transcription start sites in chlamydomonas. Cell, 1-15. http://dx.doi.org/10.1016/j.cell.2015.04.010.

Gama-Sosa, M. A., Midgett, R. M., Slagel, V A., Githens, S., Kuo, K. C., Gehrke, C. W, et al. (1983). Tissue- specific differences in DNA methylation in various mammals. Biochimica et Biophysica Acta (BBA) — Gene Structure and Expression, 740(2), 212-219. http://dx.doi.org/10.1016/0167-4781(83)90079-9.

Gonzalgo, M. L., & Gangning, L. (2007). Methylation-sensitive single-nucleotide primer extension (Ms- SNuPE) for quantitative measurement of DNA methylation. Nature Protocol, 2(8), 1931-1936.

Greer, E. L., Blanco, M. A., Gu, L., Sendinc, E., Liu, J., Aristizabal-Corrales, D., et al. (2015). DNA methyla- tion on N. Cell, 1-12. http://dx.doi.org/10.1016/j.cell.2015.04.005.

Grunau, C., Clark, S. J., & Rosenthal, A. (2001). Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Research, 29(13), E65-5.

Guo, J. U., Ma, D. K., Mo, H., Ball, M. P, Jang, M.-H., Bonaguidi, M. A., et al. (2011a). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14(10), 1345-1351. http://dx.doi.org/10.1038/nn.2900.

Guo, J. U., Su, Y., Shin, J. H., Shin, J., Li, H., Xie, B., et al. (2014). Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nature Neuroscience, 17(2), 215—222. http://dx.doi.org/10.1038/nn.3607.

Guo, J. U., Su, Y, Zhong, C., Ming, G.-L., & Song, H. (2011b). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423—434. http://dx.doi.org/10.10167j.cen.2011.03.022.

Hardisty, R. E., Kawasaki, F., Sahakyan, A. B., & Balasubramanian, S. (2015). Selective chemical labeling of natural T modifications in DNA. Journal of the American Chemical Society. http://dx.doi.org/ 10.1021/jacs.5b03730 150609001250004.

Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., & Baylin, S. B. (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Science of the United States of America, 95(18), 9821—9826.

Heyn, H., & Esteller, M. (2015). An adenine code for DNA: a second life for N6-Methyladenine. Cell, 1-4. http://dx.doi.org/10.1016/j.cell.2015.04.021.

Hotchkiss, R. D. (1948). The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. The Journal of Biological Chemistry, 175(1), 315-332.

Hu, C.-W., Chen, J.-L., Hsu, Y.-W., Yen, C.-C., & Chao, M.-R. (2015). Trace analysis of methylated and hydroxymethylated cytosines in DNA by isotope-dilution LC extendashMS/MS: first evidence of DNA methylation in Caenorhabditis elegans. The BiochemicalJournal, 465(1),39-47. http://dx.doi.org/ 10.1042/BJ20140844.

Huang,Y., Pastor, W. A., Shen,Y, Tahiliani, M., Liu, D. R., & Rao, A. (2010). The behaviour of 5-hydroxy- methylcytosine in bisulfite sequencing. PLoS One, 5(1), e8888. http://dx.doi.org/10.1371/ journal.pone.0008888.

Humphries, C. E., Kohli, M. A., Nathanson, L., Whitehead, P., Beecham, G., Martin, E., et al. (2015). Integrated whole transcriptome and DNA methylation analysis identifies gene networks specific to late-onset Alzheimer’s disease.Journal of Alzheimer’s Disease:JAD, 44(3), 977-987. http://dx.doi.org/ 10.3233/JAD-141989.

Inoue, A., Shen, L., Dai, Q., He, C., & Zhang, Y (2011). Generation and replication-dependent dilution of 5fC and 5caC during mouse p re implantation development. Cell Research, 21(12), 1670-1676. http://dx.doi.org/10.1038/cr.2011.189.

Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., et al. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 555(6047), 1300-1303.

Jacinto, F.V., Ballestar, E., & Esteller, M. (2007). Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. BioTechniques, 44(1) 35-passim.

Johnson, T. B., & Coghill, R. D. (1925). Researches on pyrimidines. C111. The discovery of 5-methyl- cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus 1. Journal of the American Chemical Society, 47(11), 2838-2844. http://dx.doi.org/10.1021/ja01688a030.

Kinoshita, M., Numata, S., Tajima, A., Shimodera, S., Imoto, I., & Ohmori, T. (2013). Plasma total homocysteine is associated with DNA methylation in patients with schizophrenia. Epigenetics, 8(6), 584-590. http://dx.doi.org/10.4161/epi.24621.

Kriaucionis, S., & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 524(5929), 929-930. http://dx.doi.org/10.1126/science.1169786.

Li, X., Baker-Andresen, D., Zhao, Q., Marshall,V., & Bredy, T. W. (2014a). Methyl CpG binding domain ultrasequencing: a novel method for identifying inter-individual and cell-type-specific variation in DNA methylation. Genes, Brain and Behavior, 15(7), 721-731. http://dx.doi.org/10.1111/gbb.12150.

Li, X., Wei, W., Zhao, Q.-Y, Widagdo, J., Baker-Andresen, D., Flavell, C. R., et al. (2014b). Neocortical Tet3- mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proceedings of the National Academy of Sciences of the United States of America, 111(19), 7120-7125. http://dx.doi.org/ 10.1073/pnas.1318906111.

Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 541(6146), 1237905. http://dx.doi.org/ 10.1126/science.1237905.

Lu, X., Song, C.-X., Szulwach, K., Wang, Z., Weidenbacher, P, Jin, P, et al. (2013). Chemical modification- assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. Journal of the American Chemical Society, 155(25), 9315-9317. http://dx.doi.org/10.1021/ja4044856.

Mao, W., Hu, J., Hong, T., Xing, X., Wang, S., Chen, X., et al. (2013). A convenient method for selective detection of 5-hydroxymethylcytosine and 5-formylcytosine sites in DNA sequences. Organic & Biomolecular Chemistry, 11(21), 3568. http://dx.doi.org/10.1039/c3ob40447a.

Mathias, E., Nelson, M. R., Patrick, S., Marc, Z., Triantafillos, L., George, X., et al. (2005). Quantitative high- throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 102(44), 15785—15790.

Matin, M. M., Alessandra, B., & Hornby, D. P. (2002). An analytical method for the detection of methylation differences at specific chromosomal loci using primer extension and ion pair reverse phase HPLC. Human Mutation, 20(4), 305—311.

Miao, Y, Hon, G. C., Szulwach, K. E., Chun-Xiao, S., Peng, J., Bing, R., et al. (2012). Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nature Protocols, 7(12), 2159—2170.

Miller, C. A., Gavin, C. F., White, J. A., Parrish, R. R., Honasoge, A., Yancey, C. R., et al. (2010). Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13(6), 664—666. http://dx.doi.org/ 10.1038/nn.2560.

Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron.

Moore, K., McKnight, A. J., Craig, D., & O’Neill, F. (2014). Epigenome-wide association study for Parkinson’s disease. Neuromolecular Medicine, 16(4), 845—855. http://dx.doi.org/10.1007/s12017-014-8332-8.

Olek, A., Oswald, J., & Walter, J. (1996). A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Research, 24(24), 5064—5066.

Pfaffeneder, T., Hackner, B., Truss, M., Munzel, M., Muller, M., Deiml, C. A., et al. (2011). The discovery of 5-formylcytosine in embryonic stem cell DNA. Angewandte Chemie (International Ed. in English), 50(31), 7008-7012. http://dx.doi.org/10.1002/anie.201103899.

Ratel, D., Ravanat, J. L., Berger, F., & Wion, D. (2006). N6-Methyladenine: the other methylated base of DNA. Bioessays, 28(3), 309-315. http://dx.doi.org/10.1002/bies.20342.

Rauch, T. A., & Pfeifer, G. P. (2010). DNA methylation profiling using the methylated-CpG island recovery assay (MIRA). Methods, 52(3), 213-217. http://dx.doi.org/10.10167j.ymeth.2010.03.004.

Robinson, C. A., Hayward-Lester, A., Hewetson, A., Oefner, P. J., Doris, P. A., & Chilton, B. S. (1997). Quantification of alternatively spliced RUSH mRNA isoforms by QRT-PCR and IP-RP-HPLC analysis: a new approach to measuring regulated splicing efficiency. Gene, 198(1-2), 1-4.

Rollins, R. A. (2005). Large-scale structure of genomic methylation patterns. Genome Research, 16(2), 157— 163. http://dx.doi.org/10.1101/gr.4362006.

Song, Y, Miyaki, K., Suzuki, T., Sasaki, Y, Tsutsumi, A., Kawakami, N., et al. (2014). Altered DNA methyla- tion status of human brain derived neurotrophis factor gene could be useful as biomarker of depression. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: the Official Publication of the International Society of Psychiatric Genetics, 165B(4), 357-364. http://dx.doi.org/10.1002/ajmg.b.32238.

Sun, Z., Dai, N., Borgaro, J., Quimby, A., Sun, D., Correa, I., et al. (2015). A sensitive approach to map genome-wide 5-hydroxymethylcytosine and 5-formylcytosine at single-base resolution. Molecular Cell, 57(4), 750-761.

Szwagierczak, A., Bultmann, S., Schmidt, C. S., Spada, F, & Leonhardt, H. (2010). Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Research, 38(19), e181. http://dx.doi.org/10.1093/nar/gkq684.

Tahiliani, M., Koh, K. P, Shen, Y, Pastor, W. A., Bandukwala, H., Brudno, Y, et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930-935. http://dx.doi.org/10.1126/science.1170116.

Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J., & Ecker, J. R. (2015). MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nature Protocols, 10(3), 475-483. http://dx.doi.org/ 10.1038/nprot.2014.114.

Vanyushin, B. F., Nemirovsky, L. E., Klimenko, V V., Vasiliev, V K., & Belozersky, A. N. (1972). The 5-methyl- cytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia, 19(3), 138-152.

Wagner, I., & Capesius, I. (1981). Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography. Biochimica et Biophysica Acta, 654(1), 52-56.

Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847—854. http://dx.doi.org/ 10.1038/nn1276.

Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W L., et al. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37(8), 853—862. http://dx.doi.org/10.1038/ng1598.

Wojdacz, T. K., Alexander, D., & Lise Lotte, H. (2008). Methylation-sensitive high-resolution melting. Nature Protocol, 3(12), 1903-1908.

Wolf, S. F, & Migeon, B. R. (1982). Studies of X chromosome DNA methylation in normal human cells. Nature, 295(5851), 667-671. http://dx.doi.org/10.1038/295667a0.

Wyatt, G. R., & Cohen, S. S. (1952). A new pyrimidine base from bacteriophage nucleic acids. Nature, 170(4338), 1072-1073. http://dx.doi.org/10.1038/1701072a0.

Xia, B., Han, D., Lu, X., Sun, Z., Zhou, A., Yin, Q., et al. (2015). Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nature Methods, 12(11), 1047-1050. http://dx.doi.org/ 10.1038/nmeth.3569.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel