Baubec, T., Ivanek, R., Lienert, F., & Schubeler, D. (2013). Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell, 153(2), 480—492. 10.1016/j.cell.2013.03.011.

Blaschke, K., Ebata, K. T., Karimi, M. M., Zepeda-Martinez, J. A., Goyal, P., Mahapatra, S., et al. (2013). Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 500(7461), 222—226.

Chen, H., Dzitoyeva, S., & Manev, H. (2012). Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus. Restorative Neurology and Neuroscience, 30(3), 237—245. RNN-2012-110223.

Chouliaras, L., van den Hove, D. L. A., Kenis, G., Keitel, S., Hof, P R., van Os, J., et al. (2012). Age-related increase in levels of 5-hydroxymethylcytosine in mouse hippocampus is prevented by caloric restriction.

Current Alzheimer Research, 9(5), 536—544.

Chouliaras, L., Mastroeni, D., Delvaux, E., Grover, A., Kenis, G., Hof, P R., et al. (2013). Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiology of Aging, 34, 2091—2099.

Colquitt, B. M., Allen, W. E., Barnea, G., & Lomvardas, S. (2013). Alteration of genic 5-hydroxymethylcy- tosine patterning in olfactory neurons correlates with changes in gene expression and cell identity. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14682—14687.

Condliffe, D., Wong, A., Troakes, C., Proitsi, P, Patel, Y, Choiliaras, L., et al. (2014). Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer’s disease brain. Neurobiology of Aging, 35, 1850—1854.

Coppieters, N., Dieriks, B. V, Lill, C., Faull, R. L. M., Curtis, M. A., & Dragunow, M. (2014). Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiology of Aging, 35, 1334—1344.

Dawlaty, M. M., Breiling, A., Le, T., Raddatz, G., Barrasa, M. I., Cheng, A. W., et al. (2013). Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Developmental Cell, 24(3), 310—323.

Dawlaty, M. M., Ganz, K., Powell, B. E., Hu,Y-C., Markoulaki, S., Cheng, A. W, et al. (2011). Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell, 9(2), 166—175.

Frauer, C., Hoffmann, T., Bultmann, S., Casa, V., Cardoso, M. C., Antes, I., et al. (2011). Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS One, 6(6), e21306. 10.1371/journal.pone.0021306.

Globisch, D., Munzel, M., Muller, M., Michalakis, S., Wagner, M., Koch, S., et al. (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One, 5(12), e15367.

Guo, J. U., Ma, D. K., Mo, H., Ball, M. P, Jang, M.-H., Bonaguidi, M. A., et al. (2011a). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14(10), 1345—1351.

Guo, J. U., Su, Y, Zhong, C., Ming, G.-L., & Song, H. (2011b). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423—434. 10.1016/j.cell.2011.03.022.

Hahn, M. A., Qiu, R., Wu, X., Li, A. X., Zhang, H., Wang, J., et al. (2013). Dynamics of 5-hydroxymethylcy- tosine and chromatin marks in mammalian neurogenesis. Cell Reports, 3(2), 291—300. 10.1016/j.celrep.2013.01.011.

He, Y.-F., Li, B.-Z., Li, Z., Liu, P., Wang, Y, Tang, Q., et al. (2011). Tet-mediated formation of 5-carboxylcy- tosine and its excision by TDG in mammalian DNA. Science (New York, NY), 333(6047), 1303-1307.

Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., et al. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science (New York, NY), 333(6047), 1300-1303.

Iyer, L. M., Tahiliani, M., Rao, A., & Aravind, L. (2009). Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle (Georgetown,Tex.), 5(11), 1698-1710.

Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl.), 245-254.

Jin, S.-G., Wu, X., Li, A. X., & Pfeifer, G. P. (2011). Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Research, 39(12), 5015-5024.

Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G.-L., et al. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79(6), 1086-1093.

Khare, T., Pai, S., Koncevicius, K., Pal, M., Kriukiene, E., Liutkeviciute, Z., et al. (2012). 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nature Structural & Molecular Biology, 19(10), 1037-1043.

Khrapunov, S., Warren, C., Cheng, H., Berko, E. R., Greally, J. M., & Brenowitz, M. (2014). Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry, 53(21), 3379-3391.

Ko, M., Bandukwala, H. S., An, J., Lamperti, E. D., Thompson, E. C., Hastie, R., et al. (2011). Ten- Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 108(35), 14566-14571.

Kohli, R. M., & Zhang, Y (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472), 472-479.

Kriaucionis, S., & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science (New York, NY), 324(5929), 929-930. science.1169786.

Li, Z., Cai, X., Cai, C.-L., Wang, J., Zhang, W, Petersen, B. E., et al. (2011). Deletion ofTet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood, 118(17), 4509-4518.

Li, X., Wei, W, Zhao, Q.-Y., Widagdo, J., Baker-Andresen, D., Flavell, C. R., et al. (2014). Neocortical Tet3- mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proceedings of the National Academy of Sciences of the United States of America, 111(19), 7120-7125. 10.1073/pnas.1318906111.

Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science (New York, NY).

Maunakea, A. K., Chepelev, I., Cui, K., & Zhao, K. (2013). Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Research, 23(11), 1256-1269.

Mellen, M., Ayata, P, Dewell, S., Kriaucionis, S., & Heintz, N. (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151(7), 1417-1430.

Munzel, M., Globisch, D., Bruckl, T., Wagner, M., Welzmiller, V., Michalakis, S., et al. (2010). Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angewandte Chemie (International ed. in English), 49(31), 5375-5377.

Penn, N. W, Suwalski, R., O’Riley, C., Bojanowski, K., & Yura, R. (1972). The presence of 5-hydroxymeth- ylcytosine in animal deoxyribonucleic acid. The Biochemical Journal, 126(4), 781-790.

Rudenko, A., Dawlaty, M. M., Seo, J., Cheng, A. W, Meng, J., Le, T., et al. (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction.Neuron, 79(6),1109-1122. 10.1016/j.neuron.2013.08.003.

Song, C.-X., Szulwach, K. E., Fu, Y., Dai, Q., Yi, C., Li, X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnology, 22(1), 68—72.

Spruijt, C. G., Gnerlich, F, Smits, A. H., Pfaffeneder, T., Jansen, P W. T.C., Bauer, C., et al. (2013). Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell, 152(5), 1146—1159.

Sun, W, Zang, L., Shu, Q., & Li, X. (2014). From development to diseases: the role of 5hmC in brain. Genomics, 104(5), 347—351.

Szulwach, K. E., Li, X., Li, Y, Song, C.-X., Wu, H., Dai, Q., et al. (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 14(12), 1607—1616.

Szwagierczak, A., Bultmann, S., Schmidt, C. S., Spada, F, & Leonhardt, H. (2010). Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Research, 38(19), e181.

Tahiliani, M., Koh, K. P, Shen, Y, Pastor, W. A., Bandukwala, H., Brudno, Y, et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (NewYork, NY), 324(5929), 930-935.

UniProt Consortium. (2015). UniProt: a hub for protein information. Nucleic Acids Research, 43(Database issue), D204—D212.

Valinluck, V., Tsai, H.-H., Rogstad, D. K., Burdzy, A., Bird, A., & Sowers, L. C. (2004). Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl- CpG binding protein 2 (MeCP2). Nucleic Acids Research, 32(14), 4100-4108. 10.1093/nar/gkh739.

Wang, F,Yang,Y, Lin, X., Wang, J.-Q., Wu,Y-S., Xie,W, et al. (2013). Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Human Molecular Genetics, 22(18), 3641-3653.

Wang, Y, & Zhang, Y (2014). Regulation of TET protein stability by calpains. Cell Reports, 6(2), 278-284.

Wen, L., Li, X., Yan, L., Tan, Y, Li, R., Zhao, Y, et al. (2014). Whole-genome analysis of 5-hydroxymethylcy- tosine and 5-methylcytosine at base resolution in the human brain. Genome Biology, 15(3), R49.

Wheldon, L. M., Abakir, A., Ferjentsik, Z., Dudnakova, T., Strohbuecker, S., Christie, D., et al. (2014). Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Cell Reports, 7(5), 1353-1361. j.celrep.2014.05.003.

Wyatt, G. R., & Cohen, S. S. (1953). The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. The Biochemical Journal, 55(5), 774-782.

Xu, Y, Xu, C., Kato, A., Tempel, W, Abreu, J. G., Bian, C., et al. (2012). Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell, 151(6), 1200-1213.

Yin, R., Mao, S.-Q., Zhao, B., Chong, Z., Yang, Y., Zhao, C., et al. (2013). Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals .Journal of the American Chemical Society, 135(28), 10396-10403.

Yu, M., Hon, G. C., Szulwach, K. E., Song, C.-X., Zhang, L., Kim, A., et al. (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell, 149(6), 1368-1380. 10.1016/j.cell.2012.04.027.

Yu, H., Su, Y., Shin, J., Zhong, C., Guo, J. U., Weng, Y.-L., et al. (2015). Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nature Neuroscience, 18(6), 836-843.

Zhang, R.-R., Cui, Q.-Y, Murai, K., Lim, Y C., Smith, Z. D., Jin, S., et al. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13(2), 237-245. j.stem.2013.05.006.

< Prev   CONTENTS   Source   Next >