Menu
Home
Log in / Register
 
Home arrow Health arrow DNA Modifications in the Brain. Neuroepigenetic Regulation of Gene Expression
Source

REFERENCES

Baubec, T., Ivanek, R., Lienert, F., & Schubeler, D. (2013). Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell, 153(2), 480—492. http://dx.doi.org/ 10.1016/j.cell.2013.03.011.

Blaschke, K., Ebata, K. T., Karimi, M. M., Zepeda-Martinez, J. A., Goyal, P., Mahapatra, S., et al. (2013). Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 500(7461), 222—226. http://dx.doi.org/10.1038/nature12362.

Chen, H., Dzitoyeva, S., & Manev, H. (2012). Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus. Restorative Neurology and Neuroscience, 30(3), 237—245. http://dx.doi.org/10.3233/ RNN-2012-110223.

Chouliaras, L., van den Hove, D. L. A., Kenis, G., Keitel, S., Hof, P R., van Os, J., et al. (2012). Age-related increase in levels of 5-hydroxymethylcytosine in mouse hippocampus is prevented by caloric restriction.

Current Alzheimer Research, 9(5), 536—544.

Chouliaras, L., Mastroeni, D., Delvaux, E., Grover, A., Kenis, G., Hof, P R., et al. (2013). Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiology of Aging, 34, 2091—2099. http://dx.doi.org/10.1016/j.neurobiolaging.2013.02.021.

Colquitt, B. M., Allen, W. E., Barnea, G., & Lomvardas, S. (2013). Alteration of genic 5-hydroxymethylcy- tosine patterning in olfactory neurons correlates with changes in gene expression and cell identity. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14682—14687. http://dx.doi.org/10.1073/pnas.1302759110.

Condliffe, D., Wong, A., Troakes, C., Proitsi, P, Patel, Y, Choiliaras, L., et al. (2014). Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer’s disease brain. Neurobiology of Aging, 35, 1850—1854. http://dx.doi.org/10.1016/j.neurobiolaging.2014.02.002.

Coppieters, N., Dieriks, B. V, Lill, C., Faull, R. L. M., Curtis, M. A., & Dragunow, M. (2014). Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiology of Aging, 35, 1334—1344. http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.031.

Dawlaty, M. M., Breiling, A., Le, T., Raddatz, G., Barrasa, M. I., Cheng, A. W., et al. (2013). Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Developmental Cell, 24(3), 310—323. http://dx.doi.org/10.10160j.devcel.2012.12.015.

Dawlaty, M. M., Ganz, K., Powell, B. E., Hu,Y-C., Markoulaki, S., Cheng, A. W, et al. (2011). Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell, 9(2), 166—175. http://dx.doi.org/10.1016/j.stem.2011.07.010.

Frauer, C., Hoffmann, T., Bultmann, S., Casa, V., Cardoso, M. C., Antes, I., et al. (2011). Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS One, 6(6), e21306. http://dx.doi.org/ 10.1371/journal.pone.0021306.

Globisch, D., Munzel, M., Muller, M., Michalakis, S., Wagner, M., Koch, S., et al. (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One, 5(12), e15367. http://dx.doi.org/10.1371/journal.pone.0015367.

Guo, J. U., Ma, D. K., Mo, H., Ball, M. P, Jang, M.-H., Bonaguidi, M. A., et al. (2011a). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14(10), 1345—1351. http://dx.doi.org/10.1038/nn.2900.

Guo, J. U., Su, Y, Zhong, C., Ming, G.-L., & Song, H. (2011b). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423—434. http://dx.doi.org/ 10.1016/j.cell.2011.03.022.

Hahn, M. A., Qiu, R., Wu, X., Li, A. X., Zhang, H., Wang, J., et al. (2013). Dynamics of 5-hydroxymethylcy- tosine and chromatin marks in mammalian neurogenesis. Cell Reports, 3(2), 291—300. http://dx.doi.org/ 10.1016/j.celrep.2013.01.011.

He, Y.-F., Li, B.-Z., Li, Z., Liu, P., Wang, Y, Tang, Q., et al. (2011). Tet-mediated formation of 5-carboxylcy- tosine and its excision by TDG in mammalian DNA. Science (New York, NY), 333(6047), 1303-1307. http://dx.doi.org/10.1126/science.1210944.

Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., et al. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science (New York, NY), 333(6047), 1300-1303. http://dx.doi.org/10.1126/science.1210597.

Iyer, L. M., Tahiliani, M., Rao, A., & Aravind, L. (2009). Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle (Georgetown,Tex.), 5(11), 1698-1710.

Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl.), 245-254. http://dx.doi.org/10.1038/ng1089.

Jin, S.-G., Wu, X., Li, A. X., & Pfeifer, G. P. (2011). Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Research, 39(12), 5015-5024. http://dx.doi.org/10.1093/nar/gkr120.

Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G.-L., et al. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79(6), 1086-1093. http://dx.doi.org/10.1016/j.neuron.2013.08.032.

Khare, T., Pai, S., Koncevicius, K., Pal, M., Kriukiene, E., Liutkeviciute, Z., et al. (2012). 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nature Structural & Molecular Biology, 19(10), 1037-1043. http://dx.doi.org/10.1038/nsmb.2372.

Khrapunov, S., Warren, C., Cheng, H., Berko, E. R., Greally, J. M., & Brenowitz, M. (2014). Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry, 53(21), 3379-3391. http://dx.doi.org/10.1021/bi500424z.

Ko, M., Bandukwala, H. S., An, J., Lamperti, E. D., Thompson, E. C., Hastie, R., et al. (2011). Ten- Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 108(35), 14566-14571. http://dx.doi.org/10.1073/pnas.1112317108.

Kohli, R. M., & Zhang, Y (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472), 472-479. http://dx.doi.org/10.1038/nature12750.

Kriaucionis, S., & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science (New York, NY), 324(5929), 929-930. http://dx.doi.org/10.1126/ science.1169786.

Li, Z., Cai, X., Cai, C.-L., Wang, J., Zhang, W, Petersen, B. E., et al. (2011). Deletion ofTet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood, 118(17), 4509-4518. http://dx.doi.org/10.1182/blood-2010-12-325241.

Li, X., Wei, W, Zhao, Q.-Y., Widagdo, J., Baker-Andresen, D., Flavell, C. R., et al. (2014). Neocortical Tet3- mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proceedings of the National Academy of Sciences of the United States of America, 111(19), 7120-7125. http://dx.doi.org/ 10.1073/pnas.1318906111.

Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science (New York, NY). http://dx.doi.org/10.1126/science.1237905.

Maunakea, A. K., Chepelev, I., Cui, K., & Zhao, K. (2013). Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Research, 23(11), 1256-1269. http://dx.doi.org/10.1038/cr.2013.110.

Mellen, M., Ayata, P, Dewell, S., Kriaucionis, S., & Heintz, N. (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151(7), 1417-1430. http://dx.doi.org/10.1016/j.cell.2012.11.022.

Munzel, M., Globisch, D., Bruckl, T., Wagner, M., Welzmiller, V., Michalakis, S., et al. (2010). Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angewandte Chemie (International ed. in English), 49(31), 5375-5377. http://dx.doi.org/10.1002/anie.201002033.

Penn, N. W, Suwalski, R., O’Riley, C., Bojanowski, K., & Yura, R. (1972). The presence of 5-hydroxymeth- ylcytosine in animal deoxyribonucleic acid. The Biochemical Journal, 126(4), 781-790.

Rudenko, A., Dawlaty, M. M., Seo, J., Cheng, A. W, Meng, J., Le, T., et al. (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction.Neuron, 79(6),1109-1122.http://dx.doi.org/ 10.1016/j.neuron.2013.08.003.

Song, C.-X., Szulwach, K. E., Fu, Y., Dai, Q., Yi, C., Li, X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnology, 22(1), 68—72. http://dx.doi.org/10.1038/nbt.1732.

Spruijt, C. G., Gnerlich, F, Smits, A. H., Pfaffeneder, T., Jansen, P W. T.C., Bauer, C., et al. (2013). Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell, 152(5), 1146—1159. http://dx.doi.org/10.1016/jxell.2013.02.004.

Sun, W, Zang, L., Shu, Q., & Li, X. (2014). From development to diseases: the role of 5hmC in brain. Genomics, 104(5), 347—351. http://dx.doi.org/10.1016Zj.ygeno.2014.08.021.

Szulwach, K. E., Li, X., Li, Y, Song, C.-X., Wu, H., Dai, Q., et al. (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 14(12), 1607—1616. http://dx.doi.org/10.1038/nn.2959.

Szwagierczak, A., Bultmann, S., Schmidt, C. S., Spada, F, & Leonhardt, H. (2010). Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Research, 38(19), e181. http://dx.doi.org/10.1093/nar/gkq684.

Tahiliani, M., Koh, K. P, Shen, Y, Pastor, W. A., Bandukwala, H., Brudno, Y, et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (NewYork, NY), 324(5929), 930-935. http://dx.doi.org/10.1126/science.1170116.

UniProt Consortium. (2015). UniProt: a hub for protein information. Nucleic Acids Research, 43(Database issue), D204—D212. http://dx.doi.org/10.1093/nar/gku989.

Valinluck, V., Tsai, H.-H., Rogstad, D. K., Burdzy, A., Bird, A., & Sowers, L. C. (2004). Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl- CpG binding protein 2 (MeCP2). Nucleic Acids Research, 32(14), 4100-4108. http://dx.doi.org/ 10.1093/nar/gkh739.

Wang, F,Yang,Y, Lin, X., Wang, J.-Q., Wu,Y-S., Xie,W, et al. (2013). Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Human Molecular Genetics, 22(18), 3641-3653. http://dx.doi.org/10.1093/hmg/ddt214.

Wang, Y, & Zhang, Y (2014). Regulation of TET protein stability by calpains. Cell Reports, 6(2), 278-284. http://dx.doi.org/10.1016/jxelrep.2013.12.031.

Wen, L., Li, X., Yan, L., Tan, Y, Li, R., Zhao, Y, et al. (2014). Whole-genome analysis of 5-hydroxymethylcy- tosine and 5-methylcytosine at base resolution in the human brain. Genome Biology, 15(3), R49. http://dx.doi.org/10.1186/gb-2014-15-3-r49.

Wheldon, L. M., Abakir, A., Ferjentsik, Z., Dudnakova, T., Strohbuecker, S., Christie, D., et al. (2014). Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Cell Reports, 7(5), 1353-1361. http://dx.doi.org/10.1016/ j.celrep.2014.05.003.

Wyatt, G. R., & Cohen, S. S. (1953). The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. The Biochemical Journal, 55(5), 774-782.

Xu, Y, Xu, C., Kato, A., Tempel, W, Abreu, J. G., Bian, C., et al. (2012). Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell, 151(6), 1200-1213. http://dx.doi.org/10.1016/jxell.2012.11.014.

Yin, R., Mao, S.-Q., Zhao, B., Chong, Z., Yang, Y., Zhao, C., et al. (2013). Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals .Journal of the American Chemical Society, 135(28), 10396-10403. http://dx.doi.org/10.1021/ja4028346.

Yu, M., Hon, G. C., Szulwach, K. E., Song, C.-X., Zhang, L., Kim, A., et al. (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell, 149(6), 1368-1380. http://dx.doi.org/ 10.1016/j.cell.2012.04.027.

Yu, H., Su, Y., Shin, J., Zhong, C., Guo, J. U., Weng, Y.-L., et al. (2015). Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nature Neuroscience, 18(6), 836-843. http://dx.doi.org/10.1038/nn.4008.

Zhang, R.-R., Cui, Q.-Y, Murai, K., Lim, Y C., Smith, Z. D., Jin, S., et al. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13(2), 237-245. http://dx.doi.org/10.1016/ j.stem.2013.05.006.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel