Menu
Home
Log in / Register
 
Home arrow Health arrow DNA Modifications in the Brain. Neuroepigenetic Regulation of Gene Expression
Source

ACKNOWLEDGMENTS

This work was supported by NIH/NINDS R00NS080911 (EAM), and an ARC Future Fellowship and

Sylvia and Charles Viertel Foundation Senior Medical Researh Felloship (RL).

REFERENCES

Bachman, M., et al. (2014). 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nature Chemistry, 6(12), 1049-1055.

Baillie, J. K., Barnett, M. W., Upton, K. R., Gerhardt, D. J., Richmond, T. A., De Sapio, F., et al. (2011). Somatic retro transposition alters the genetic landscape of the human brain. Nature, 479(7374), 534-537. http://doi.org/10.1038/nature10531.

Baubec, T., Colombo, D. F, Wirbelauer, C., Schmidt, J., Burger, L., Krebs, A. R., et al. (2015). Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature, 520(7546), 243-247. http://doi.org/10.1038/nature14176.

Berman, B. P., Weisenberger, D. J., Aman, J. F., Hinoue, T., Ramjan, Z., Liu, Y., et al. (2012). Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nature Genetics, 44(1), 40—46. http://doi.org/10.1038/ng.969.

Bourc’his, D., Xu, G.-L., Lin, C.-S., Bollman, B., & Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science (New York, NY), 294(5551), 2536—2539. http://doi.org/10.1126/ science.1065848.

Buenrostro, J. D., Giresi, P G., Zaba, L. C., Chang, H. Y, & Greenleaf, W J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and

nucleosome position. Nature Methods, 10(12), 1213—1218. http://doi.org/10.1038/nmeth.2688.

Chahrour, M., & Zoghbi, H. Y (2007). The story of Rett syndrome: from clinic to neurobiology. Neuron, 56(3), 422-437. http://doi.org/10.1016/j.neuron.2007.10.001.

Chen, L., Chen, K., Lavery, L. A., Baker, S. A., Shaw, C. A., Li, W., et al. (2015). MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proceedings of the National Academy of Sciences, 112(17), 5509-5514. http://doi.org/10.1073/ pnas.1505909112.

Chodavarapu, R. K., Feng, S., Bernatavichute, Y V., Chen, P-Y, Stroud, H., Yu, Y, et al. (2010). Relationship between nucleosome positioning and DNA methylation. Nature, 466(7304), 388-392.

http://doi.org/10.1038/nature09147.

De Jager, P. L., Srivastava, G., Lunnon, K., Burgess, J., Schalkwyk, L. C., Yu, L., et al. (2014). Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nature Neuroscience, 17(9), 1156-1163. http://doi.org/10.1038/nn.3786.

Deng, X., Berletch, J. B., Nguyen, D. K., & Disteche, C. M. (2014). X chromosome regulation: diverse patterns in development, tissues and disease. Nature Reviews Genetics, 15(6), 367-378. http://doi.org/ 10.1038/nrg3687.

Farlik, M., Sheffield, N. C., Nuzzo, A., Datlinger, P, Schonegger, A., Klughammer, J., et al. (2015). Single-cell DNA methylome sequencing and bioinfo rmatic inference of epigenomic cell-state dynamics. Cell Reports, 10(8), 1386-1397. http://doi.org/10.1016/j.celrep.2015.02.001.

Gabel, H. W., Kinde, B., Stroud, H., Gilbert, C. S., Harmin, D. A., Kastan, N. R., et al. (2015). Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature, 522(7554), 89-93. http://doi.org/10.1038/nature14319.

Guo, J. U., Su, Y, Shin, J. H., Shin, J., Li, H., Xie, B., et al. (2014). Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nature Neuroscience, 17(2), 215-222. http://doi.org/10.1038/nn.3607.

Guo, J. U., Su, Y, Zhong, C., Ming, G. L., & Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423-434.

Hon, G. C., Rajagopal, N., Shen, Y., McCleary, D. F, Yue, F, Dang, M. D., et al. (2013). Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nature Genetics, 45(10), 1198-1206. http://doi.org/10.1038/ng.2746.

Johnston, C. M., Lovell, F. L., Leongamornlert, D. A., Stranger, B. E., Dermitzakis, E. T., & Ross, M. T. (2008). Large-scale population study of human cell lines indicates that dosage compensation is virtually complete. PLoS Genetics, 4(1), e9. http://doi.org/10.1371/journal.pgen.0040009.st003.

Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Ong, C. T., et al. (2010). Dynamic changes in the human methylome during differentiation. Genome Research, 20(3), 320-331. http://doi.org/10.1101/gr.101907.109.

Lister, R., & Ecker, J. R. (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Research, 19(6), 959-966. http://doi.org/10.1101/gr.083451.108.

Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science (New York, NY), 341(6146). 1237905 http://doi.org/10.1126/science.1237905.

Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315-322. http://doi.org/10.1038/nature08514.

Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336), 68-73. http://doi.org/10.1038/nature09798.

Maeder, M. L., Angstman, J. F., Richardson, M. E., Linder, S. J., Cascio,V. M., Tsai, S. Q., et al. (2013). Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nature Biotechnology, 31(12), 1137—1142. http://doi.org/10.1038/nbt.2726.

McConnell, M. J., Lindberg, M. R., Brennand, K. J., Piper, J. C., Voet, T., Cowing-Zitron, C., et al. (2013). Mosaic copy number variation in human neurons. Science (New York, NY), 342(6158), 632—637. http://doi.org/10.1126/science.1243472.

Mellen, M., Ayata, P, Dewell, S., Kriaucionis, S., & Heintz, N. (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151(7), 1417—1430. http://doi.org/10.1016/j.cell.2012.11.022.

Mo, A., Mukamel, E. A., Davis, F. P, Luo, C., Henry, G. L., Picard, S., et al. (2015). Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron, 86(6), 1369—1384. http://doi.org/10.1016/ j.neuron.2015.05.018.

Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99(3), 247—257.

Oliveira, A. M. M., Hemstedt, T. J., & Bading, H. (2012). Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nature Neuroscience, 15(8), 1111—1113. http://doi.org/ 10.1038/nn.3151.

Ooi, S. K. T., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 448(7154), 714—717. http://doi.org/ 10.1038/nature05987.

Pidsley, R., Viana, J., Hannon, E., Spiers, H., Troakes, C., Al-Saraj, S., et al. (2014). Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biology, 15(10), 483. http://doi.org/10.1186/s13059-014-0483-2.

Ramsahoye, B. H., Biniszkiewicz, D., Lyko, F, Clark, V., Bird, A. P, & Jaenisch, R. (2000). Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5237—5242.

Ricceri, L., De Filippis, B., & Laviola, G. (2008). Mouse models of Rett syndrome: from behavioural phe- notyping to preclinical evaluation of new therapeutic approaches. Behavioural Pharmacology, 19(5—6), 501-517. http://doi.org/10.1097/FBP.0b013e32830c3645.

Saxonov, S., Berg, P, & Brutlag, D. L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1412-1417. http://doi.org/10.1073/pnas.0510310103.

Schubeler, D. (2015). Function and information content of DNA methylation. Nature, 517(7534), 321-326. http://doi.org/10.1038/nature14192.

Schultz, M. D., He, Y, Whitaker, J. W, Hariharan, M., Mukamel, E. A., Leung, D., et al. (2015). Human body epigenome maps reveal noncanonical DNA methylation variation. Nature, 523(7559), 212-216. http://doi.org/10.1038/nature14465.

Sharp, A. J., Stathaki, E., Migliavacca, E., Brahmachary, M., Montgomery, S. B., Dupre,Y, et al. (2011). DNA methylation profiles of human active and inactive X chromosomes. Genome Research, 21(10), 1592-1600. http://doi.org/10.1101/gr.112680.110.

Smallwood, S. A., Lee, H. J., Angermueller, C., Krueger, F, Saadeh, H., Peat, J., et al. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nature Methods, 11(8), 817-820. http://doi.org/10.1038/nmeth.3035.

Spiegel, I., Mardinly, A. R., Gabel, H. W., Bazinet, J. E., Couch, C. H., Tzeng, C. P, et al. (2014). Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. Cell, 157(5), 1216-1229. http://doi.org/10.1016/jxell.2014.03.058.

Sugino, K., Hempel, C. M., Okaty, B. W., Arnson, H. A., Kato, S., Dani, V S., et al. (2014). Cell-type-specific repression by methyl-CpG-binding protein 2 is biased toward long genes. Journal of Neuroscience, 34(38), 12877-12883. http://doi.org/10.1523/JNEUROSCI.2674-14.2014.

Suzuki, M. M., & Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nature Reviews Genetics, 9(6), 465-476. http://doi.org/10.1038/nrg2341.

Upton, K. R., Gerhardt, D. J., Jesuadian, J. S., Richardson, S. R., Sanchez-Luque, F. J., Bodea, G. O., et al. (2015). Ubiquitous L1 mosaicism in hippocampal neurons. Cell, 161(2), 228-239. http://doi.org/ 10.1016/j.cell.2015.03.026.

Varley, K. E., Gertz, J., Bowling, K. M., Parker, S. L., Reddy, T. E., Pauli-Behn, F., et al. (2013). Dynamic DNA methylation across diverse human cell lines and tissues. Genome Research, 23(3), 555—567. http://doi.org/ 10.1101/gr.147942.112.

Xie, W., Barr, C. L., Kim, A., Yue, F, Lee, A. Y, Eubanks, J., et al. (2012). Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 148(4), 816—831. http://doi.org/10.10167j.cell.2011.12.035.

Xie, W., Schultz, M. D., Lister, R., Hou, Z., Rajagopal, N., Ray, P., et al. (2013). Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell, 153(5), 1134—1148. http://doi.org/10.1016/ j.cell.2013.04.022.

Yu, M., Hon, G. C., Szulwach, K. E., Song, C.-X., Zhang, L., Kim, A., et al. (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell, 149(6), 1368—1380. http://doi.org/10.1016/ j.cell.2012.04.027.

Zeng, J., Konopka, G., Hunt, B. G., Preuss, T. M., Geschwind, D., &Yi, S.V (2012). Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. American Journal of Human Genetics, 91(3), 455—465. http://doi.org/10.1016/j.ajhg.2012.07.024.

Ziller, M. J., Muller, F, Liao, J., Zhang, Y, Gu, H., Bock, C., et al. (2011). Genomic distribution and intersample variation of non-CpG methylation across human cell types. PLoS Genetics, 7(12), e1002389. http://doi.org/10.1371/journal.pgen.1002389.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel