Menu
Home
Log in / Register
 
Home arrow Health arrow DNA Modifications in the Brain. Neuroepigenetic Regulation of Gene Expression
Source

ACKNOWLEDGMENTS

JJD is supported by the National Institute on Drug Abuse (DA034681 & DA039650), startup funds from University of Alabama, and the Evelyn F. McKnight Brain Research Foundation.

REFERENCES

Alberini, C. M. (2008). The role of protein synthesis during the labile phases of memory: revisiting the skepticism. Neurobiology of Learning and Memory, 89(3), 234—246.

Alberini, C. M., Milekic, M. H., & Tronel, S. (2006). Mechanisms of memory stabilization and de-stabilization. Cellular and Molecular Life Sciences: CMLS, 63(9), 999—1008.

Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23(2), 185-188.

Anier, K., Malinovskaja, K., Aonurm-Helm, A., Zharkovsky, A., & Kalda, A. (2010). Dna methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35(12), 2450-2461.

Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K., & Hannon, G. J. (2007). Developmentally regulated piRNA clusters implicate MILI in transposon control. Science, 316(5825), 744-747. http://dx.doi.org/10.1126/science.1142612.

Bachman, M., Uribe-Lewis, S., Yang, X., Burgess, H. E., Iurlaro, M., Reik, W, et al. (2015). 5-Formylcy- tosine can be a stable DNA modification in mammals. Nature Chemical Biology. http://dx.doi.org/ 10.1038/nchembio.1848.

Baker-Andresen, D., Ratnu, V S., & Bredy, T. W. (2013). Dynamic DNA methylation: a prime candidate for genomic metaplasticity and behavioral adaptation. Trends in Neurosciences, 36(1), 3-13. http://dx.doi.org/ 10.1016/j.tins.2012.09.003.

Bero, A. W., Meng, J., Cho, S., Shen, A. H., Canter, R. G., Ericsson, M., et al. (2014). Early remodeling of the neocortex upon episodic memory encoding. Proceedings of the National Academy of Sciences USA, 111(32), 11852-11857. http://dx.doi.org/10.1073/pnas.1408378111.

Brennecke, J., Malone, C. D., Aravin, A. A., Sachidanandam, R., Stark, A., & Hannon, G. J. (2008). An epigenetic role for maternally inherited piRNAs in transposon silencing. Science, 322(5906), 1387-1392. http://dx.doi.org/10.1126/science.1165171.

Coppieters, N., Dieriks, B.V, Lill, C., Faull, R. L., Curtis, M. A., & Dragunow, M. (2013). Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiology of Aging. http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.031.

Crick, F. (1984). Memory and molecular turnover. Nature, 312(5990), 101.

Davis, H. P, & Squire, L. R. (1984). Protein synthesis and memory: a review. Psychological Bulletin, 96(3), 518-559.

Day, J. J., Childs, D., Guzman-Karlsson, M. C., Kibe, M., Moulden, J., Song, E., et al. (2013). DNA meth- ylation regulates associative reward learning. Nature Neuroscience, 16(10),1445-1452.http://dx.doi.org/ 10.1038/nn.3504.

Day, J. J., Kennedy, A. J., & Sweatt, J. D. (2015). DNA methylation and its implications and accessibility for neuropsychiatric therapeutics. Annual Review of Pharmacology and Toxicology, 55, 591—611. http://dx.doi.org/10.1146/annurev-pharmtox-010814-124527.

Day, J. J., & Roberson, E. D. (2015). DNA methylation slows effects of C9orf72 mutations: an epigenetic brake on genetic inheritance. Neurology, 84(16), 1616-1617. http://dx.doi.org/10.1212/WNL. 0000000000001504.

Day, J. J., & Sweatt, J. D. (2010). DNA methylation and memory formation. Nature Neuroscience, 13(11), 1319-1323. http://dx.doi.org/10.1038/nn.2666.

Day, J. J., & Sweatt, J. D. (2012). Epigenetic treatments for cognitive impairments. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 37(1), 247-260. http://dx.doi.org/ 10.1038/npp.2011.85.

De Jager, P. L., Srivastava, G., Lunnon, K., Burgess, J., Schalkwyk, L. C., Yu, L., et al. (2014). Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nature Neuroscience, 17(9), 1156-1163. http://dx.doi.org/10.1038/nn.3786.

Di Ciano, P, Cardinal, R. N., Cowell, R. A., Little, S. J., & Everitt, B. J. (2001). Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21(23), 9471-9477.

Di Ruscio, A., Ebralidze, A. K., Benoukraf, T., Amabile, G., Goff, L. A., Terragni, J., et al. (2013). DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503(7476), 371-376. http://dx.doi.org/10.1038/nature12598.

Dulac, C. (2010). Brain function and chromatin plasticity. Nature, 465(7299), 728-735.

Feng, J., Shao, N., Szulwach, K. E.,Vialou,V., Huynh, J., Zhong, C., et al. (2015). Role ofTet1 and 5-hydroxy- methylcytosine in cocaine action.Nature Neuroscience,18(4),536-544.http://dx.doi.org/10.1038/nn.3976.

Feng, J., Zhou, Y., Campbell, S. L., Le, T., Li, E., Sweatt, J. D., et al. (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience, 13(4), 423-430.

Frankland, P W, & Bontempi, B. (2005). The organization of recent and remote memories. Nature Reviews. Neuroscience, 6(2), 119-130.

Frankland, P W, Bontempi, B., Talton, L. E., Kaczmarek, L., & Silva, A. J. (2004). The involvement of the anterior cingulate cortex in remote contextual fear memory. Science, 304(5672), 881-883.

Goto, K., Numata, M., Komura, J. I., Ono, T., Bestor, T. H., & Kondo, H. (1994). Expression of DNA meth- yltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation; Research in Biological Diversity, 56(1-2), 39-44.

Graff, J., & Tsai, L. H. (2013). Histone acetylation: molecular mnemonics on the chromatin. Nature Reviews. Neuroscience, 14(2), 97-111. http://dx.doi.org/10.1038/nrn3427.

Guo, J. U., Ma, D. K., Mo, H., Ball, M. P, Jang, M. H., Bonaguidi, M. A., et al. (2011). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14(10), 1345-1351.

Guo, J. U., Su,Y., Zhong, C., Ming, G. L., & Song, H. (2011a). Emerging roles ofTET proteins and 5-hydroxy- methylcytosines in active DNA demethylation and beyond. Cell Cycle, 10(16), 2662-2668.

Guo, J. U., Su, Y., Zhong, C., Ming, G. L., & Song, H. (2011b). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423-434.

Guzman-Karlsson, M. C., Meadows, J. P, Gavin, C. F., Hablitz, J. J., & Sweatt, J. D. (2014). Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology, 80, 3-17. http://dx.doi.org/10.1016/j.neuropharm.2014.01.001.

Handa, V., & Jeltsch, A. (2005). Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome. Journal of Molecular Biology, 348(5), 1103-1112. http://dx.doi.org/10.1016/j.jmb.2005.02.044.

Ho, V. M., Lee, J. A., & Martin, K. C. (2011). The cell biology of synaptic plasticity. Science, 334(6056), 623-628. http://dx.doi.org/10.1126/science.1209236.

Holz-Schietinger, C., & Reich, N. O. (2012). RNA modulation of the human DNA methyltransferase 3A.

Nucleic Acids Research, 40(17), 8550-8557. http://dx.doi.org/10.1093/nar/gks537.

Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., et al. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047), 1300—1303. http://dx.doi.org/10.1126/science.1210597.

Iurlaro, M., Ficz, G., Oxley, D., Raiber, E. A., Bachman, M., Booth, M. J., et al. (2013). A screen for hydroxy- methylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biology, 14(10), R119. http://dx.doi.org/10.1186/gb-2013-14-10-r119.

Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G. L., et al. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79(6), 1086-1093. http://dx.doi.org/10.1016Zj.neuron.2013.08.032.

Klann, E., & Dever, T. E. (2004). Biochemical mechanisms for translational regulation in synaptic plasticity. Nature Reviews. Neuroscience, 5(12), 931-942. http://dx.doi.org/10.1038/nrn1557.

Kriaucionis, S., & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929), 929-930.

LaPlant, Q., Vialou, V., Covington, H. E., 3rd, Dumitriu, D., Feng, J., Warren, B. L., et al. (2010). Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nature Neuroscience, 13(9), 1137-1143.

Leach, P. T., Poplawski, S. G., Kenney, J. W., Hoffman, B., Liebermann, D. A., Abel, T., et al. (2012). Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory. Learning & Memory, 19(8), 319-324. http://dx.doi.org/10.1101/lm.024984.111.

Lesburgueres, E., Gobbo, O. L., Alaux-Cantin, S., Hambucken, A., Trifilieff, P., & Bontempi, B. (2011). Early tagging of cortical networks is required for the formation of enduring associative memory. Science, 331(6019), 924-928. http://dx.doi.org/10.1126/science.1196164.

Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I. C., Desai, P., et al. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. The Journal of Biological Chemistry, 281(23), 15763-15773. http://dx.doi.org/10.1074/jbc.M511767200.

Li, E., Beard, C., & Jaenisch, R. (1993). Role for DNA methylation in genomic imprinting. Nature, 366(6453), 362-365. http://dx.doi.org/10.1038/366362a0.

Lim, A. S., Srivastava, G. P., Yu, L., Chibnik, L. B., Xu, J., Buchman, A. S., et al. (2014). 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PJLoS Genetics, 10(11), e1004792. http://dx.doi.org/10.1371/journal.pgen.1004792.

Lisman, J. E. (1985). A mechanism for memory storage insensitive to molecular turnover: a bistable auto- phosphorylating kinase. Proceedings of the National Academy of Sciences USA, 82(9), 3055-3057.

Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341(6146), 1237905. http://dx.doi.org/10.1126/science.1237905.

Liu, E.Y., Russ, J., Wu, K., Neal, D., Suh, E., McNally, A. G., et al. (2014). C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathologica, 128(4), 525-541. http://dx.doi.org/10.1007/s00401-014-1286-y.

Li, X., Wei, W., Ratnu, V S., & Bredy, T. W. (2013). On the potential role of active DNA demethylation in establishing epigenetic states associated with neural plasticity and memory. Neurobiology of Learning and Memory, 105, 125-132. http://dx.doi.org/10.1016/j.nlm.2013.06.009.

Li, X., Wei, W., Zhao, Q. Y., Widagdo, J., Baker-Andresen, D., Flavell, C. R., et al. (2014). Neocortical Tet3- mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proceedings of the National Academy of Sciences USA, 111(19),7120-7125.http://dx.doi.org/10.1073/pnas.1318906111.

Lockett, G. A., Helliwell, P, & Maleszka, R. (2010). Involvement of DNA methylation in memory processing in the honey bee. Neuroreport, 21(12), 812-816. http://dx.doi.org/10.1097/WNR.0b013e32833ce5be.

Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(42), 10576-10586.

Maddox, S. A., Watts, C. S., & Schafe, G. E. (2014). DNA methyltransferase activity is required for memory- related neural plasticity in the lateral amygdala. Neurobiology of Learning and Memory, 107, 93-100. http://dx.doi.org/10.1016/j.nlm.2013.11.008.

Ma, D. K., Guo, J. U., Ming, G. L., & Song, H. (2009). DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle, 8(10), 1526-1531.

Maiti, A., & Drohat, A. C. (2011). Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-car- boxylcytosine: potential implications for active demethylation of CpG sites. The Journal of Biological Chemistry, 286(41), 35334-35338. http://dx.doi.org/10.1074/jbc.C111.284620.

Ma, D. K., Jang, M. H., Guo, J. U., Kitabatake, Y, Chang, M. L., Pow-Anpongkul, N., et al. (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323(5917), 1074—1077.

Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron, 44(1), 5-21. http://dx.doi.org/10.1016Zj.neuron.2004.09.012.

Mammen, A. L., Huganir, R. L., & O’Brien, R. J. (1997). Redistribution and stabilization of cell surface glutamate receptors during synapse formation. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 17(19), 7351-7358.

Massart, R., Barnea, R., Dikshtein, Y, Suderman, M., Meir, O., Hallett, M., et al. (2015). Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(21), 8042-8058. http://dx.doi.org/10.1523/ JNEUROSCI.3053-14.2015.

Mayer, W., Niveleau, A., Walter, J., Fundele, R., & Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature, 403(6769), 501-502. http://dx.doi.org/10.1038/35000654.

Meadows, J. P, Guzman-Karlsson, M. C., Phillips, S., Holleman, C., Posey, J. L., Day, J. J., et al. (2015). DNA methylation regulates neuronal glutamatergic synaptic scaling. Science Signaling, 8(382), 61. http://dx.doi.org/10.1126/scisignal.aab0715.

Meagher, R. B. (2014). ‘Memory and molecular turnover,’ 30 years after inception. Epigenetics Chromatin, 7(1), 37. http://dx.doi.org/10.1186/1756-8935-7-37.

Miller, C. A., Campbell, S. L., & Sweatt, J. D. (2008). DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiology of Learning and Memory, 89(4), 599-603. http://dx.doi.org/10.1016/j.nlm.2007.07.016.

Miller, C. A., Gavin, C. F, White, J. A., Parrish, R. R., Honasoge, A.,Yancey, C. R., et al. (2010). Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13(6), 664-666. http://dx.doi.org/ 10.1038/nn.2560.

Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6), 857-869. http://dx.doi.org/10.1016/j.neuron.2007.02.022.

Mitchnick, K. A., Creighton, S., O’Hara, M., Kalisch, B. E., & Winters, B. D. (2015). Differential contributions of de novo and maintenance DNA methyltransferases to object memory processing in the rat hippocampus and perirhinal cortex - a double dissociation. The European Journal of Neuroscience, 41(6), 773-786. http://dx.doi.org/10.1111/ejn.12819.

Mizuno, K., Dempster, E., Mill, J., & Giese, K. P (2012). Long-lasting regulation of hippocampal Bdnf gene transcription after contextual fear conditioning. Genes, Brain, and Behavior, 11(6), 651-659. http://dx.doi.org/10.1111/j.1601-183X.2012.00805.x.

Monsey, M. S., Ota, K. T., Akingbade, I. F., Hong, E. S., & Schafe, G. E. (2011). Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS One, 6(5), e19958. http://dx.doi.org/10.1371/journal.pone.0019958.

Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 69-89. http://dx.doi.org/10.1146/annurev.neuro. 31.061307.090723.

Nelson, E. D., Kavalali, E. T., & Monteggia, L. M. (2008). Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(2), 395-406. http://dx.doi.org/10.1523/ JNEUROSCI.3796-07.2008.

Nguyen, P V., Abel, T., & Kandel, E. R. (1994). Requirement of a critical period of transcription for induction of a late phase of LTP. Science, 265(5175), 1104-1107.

Niehrs, C., & Schafer, A. (2012). Active DNA demethylation by Gadd45 and DNA repair. Trends in Cell Biology, 22(4), 220-227. http://dx.doi.org/10.1016/j.tcb.2012.01.002.

Nikitin, V P, Solntseva, S. V., Nikitin, P V., & Kozyrev, S. A. (2015). The role of DNA methylation in the mechanisms of memory reconsolidation and development of amnesia. Behavioural Brain Research, 279, 148-154. http://dx.doi.org/10.1016/j.bbr.2014.11.025.

Nwaobi, S. E., Lin, E., Peramsetty, S. R., & Olsen, M. L. (2014). DNA methylation functions as a critical regulator of Kir4.1 expression during CNS development. Glia, 62(3), 411—427. http://dx.doi.org/ 10.1002/glia.22613.

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171—175.

Oliveira, A. M., Hemstedt, T. J., & Bading, H. (2012). Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nature Neuroscience, 15(8), 1111—1113.

Pastor, W. A., Pape, U. J., Huang, Y., Henderson, H. R., Lister, R., Ko, M., et al. (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 473(7347), 394—397. http://dx.doi.org/10.1038/nature10102.

Plongthongkum, N., Diep, D. H., & Zhang, K. (2014). Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nature Reviews. Genetics, 15(10), 647—661. http://dx.doi.org/ 10.1038/nrg3772.

Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., & Ghaemmaghami, S. (2010). Analysis of proteome dynamics in the mouse brain. Proceedings of the National Academy of Sciences USA, 107(32), 14508—14513.

Raiber, E. A., Murat, P, Chirgadze, D. Y, Beraldi, D., Luisi, B. F., & Balasubramanian, S. (2015). 5-Formylcy- tosine alters the structure of the DNA double helix. Nature Structural & Molecular Biology, 22(1), 44—49. http://dx.doi.org/10.1038/nsmb.2936.

Rajasethupathy, P, Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschl, T., et al. (2012). A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell, 149(3), 693—707. http://dx.doi.org/10.1016/j.cell.2012.02.057.

Rajasethupathy, P, Sankaran, S., Marshel, J. H., Kim, C. K., Ferenczi, E., Lee, S. Y, et al. (2015). Projections from neocortex mediate top-down control of memory retrieval. Nature, 526(7575), 653—659. http://dx.doi.org/10.1038/nature15389.

Razin, A., & Friedman, J. (1981). DNA methylation and its possible biological roles. Progress in Nucleic Acid Research and Molecular Biology, 25, 33—52.

Reik, W., Dean, W., & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293(5532), 1089-1093. http://dx.doi.org/10.1126/science.1063443.

Roberson, E. D., & Sweatt, J. D. (2001). Memory-forming chemical reactions. Reviews in the Neurosciences, 12(1), 41-50.

Robertson, K. D., Ait-Si-Ali, S., Yokochi, T., Wade, P A., Jones, P. L., & Wolffe, A. P. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genetics, 25(3), 338-342. http://dx.doi.org/10.1038/77124.

Roth, E. D., Roth, T. L., Money, K. M., SenGupta, S., Eason, D. E., & Sweatt, J. D. (2015). DNA methylation regulates neurophysiological spatial representation in memory formation. Neuroepigenetics, 2, 1-8. http://dx.doi.org/10.1016/j.nepig.2015.03.001.

Rudenko, A., Dawlaty, M. M., Seo, J., Cheng, A. W., Meng, J., Le, T., et al. (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79(6), 1109-1122.

http://dx.doi.org/10.1016Zj.neuron.2013.08.003.

Schultz, W., Dayan, P, & Montague, P R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599.

Song, C. X., Szulwach, K. E., Dai, Q., Fu, Y, Mao, S. Q., Lin, L., et al. (2013). Genome-wide profiling of 5-for my lcy to sine reveals its roles in epigenetic priming. Cell, 153(3), 678-691. http://dx.doi.org/ 10.1016/j.cell.2013.04.001.

Stuber, G. D., Klanker, M., de Ridder, B., Bowers, M. S., Joosten, R. N., Feenstra, M. G., et al. (2008). Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science, 321(5896), 1690-1692.

Sultan, F A., & Sweatt, J. D. (2013). The role of the gadd45 family in the nervous system: a focus on neurodevelopment, neuronal injury, and cognitive neuroepigenetics. Advances in Experimental Medicine and Biology, 793, 81-119. http://dx.doi.org/10.1007/978-1-4614-8289-5_6.

Sultan, F A., Wang, J., Tront, J., Liebermann, D. A., & Sweatt, J. D. (2012). Genetic deletion of Gadd45b, a regulator of active DNA demethylation, enhances long-term memory and synaptic plasticity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(48), 17059-17066. http://dx.doi.org/10.1523/JNEUROSCI.1747-12.2012.

Sutcliffe, J. S., Nelson, D. L., Zhang, F., Pieretti, M., Caskey, C. T., Saxe, D., et al. (1992). DNA methylation represses FMR-1 transcription in fragile X syndrome. Human Molecular Genetics, 1(6), 397—400.

Tahiliani, M., Koh, K. P, Shen, Y, Pastor, W. A., Bandukwala, H., Brudno, Y, et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930-935.

Tsai, Y P, Chen, H. F, Chen, S. Y, Cheng, W. C., Wang, H. W., Shen, Z. J., et al. (2014). TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biology, 15(12), 513. http://dx.doi.org/10.1186/s13059-014-0513-0.

Tsai, H. C., Zhang, F, Adamantidis, A., Stuber, G. D., Bonci, A., de Lecea, L., et al. (2009). Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science, 324(5930), 1080-1084.

Tse, D., Takeuchi, T., Kakeyama, M., Kajii,Y., Okuno, H., Tohyama, C., et al. (2011). Schema-dependent gene activation and memory encoding in neocortex. Science, 333(6044), 891-895. http://dx.doi.org/ 10.1126/science.1205274.

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391(6670), 892-896. http://dx.doi.org/ 10.1038/36103.

Vanyushin, B. F, Tushmalova, N. A., & Guskova, L. V (1974). Brain DNA methylation as an indicator of genome participation in the individually acquired memory mechanisms. Doklady Akademii Nauk USSR, 219(3), 742-744.

Vanyushin, B. F, Tushmalova, N. A., & Guskova, L. V (1977). Changes in rat brain DNA methylation following conditional memory formation. Molecular Biology (Moscow), 11, 181-188.

Wu, S. C., & Zhang, Y. (2010). Active DNA demethylation: many roads lead to Rome. Nature Reviews. Molecular Cell Biology, 11(9), 607-620.

Xu, Y., Xu, C., Kato, A., Tempel, W., Abreu, J. G., Bian, C., et al. (2012). Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell, 151(6), 1200-1213. http://dx.doi.org/10.1016/j.cell.2012.11.014.

Yu, H., Su,Y, Shin, J., Zhong, C., Guo, J. U., Weng,Y L., et al. (2015). Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nature Neuroscience, 18(6), 836-843.

http://dx.doi.org/10.1038/nn.4008.

Zhang, R. R., Cui, Q. Y, Murai, K., Lim, Y C., Smith, Z. D., Jin, S., et al. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13(2), 237-245. http://dx.doi.org/

10.1016/j.stem.2013.05.006.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel