Menu
Home
Log in / Register
 
Home arrow Health arrow DNA Modifications in the Brain. Neuroepigenetic Regulation of Gene Expression
Source

ACKNOWLEDGMENTS

Preparation of this review was supported by grants from the National Institute on Drug Abuse. The authors

apologize for work not cited in this review due to space limitations.

REFERENCES

Anier, K., Malinovskaja, K., Aonurm-Helm, A., Zharkovsky, A., & Kalda, A. (2010). DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology: Official Publication of the American College ojNeu ropsy ch op harm a cology,35( 12) ,2'450—2461 .http://dx.doi.org/10.1038/npp.2010.128, pii:npp2010128.

Anthony, J. C., Warner, L. A., & Kessler, R. C. (1994). Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Experimental and Clinical Psychopharmacology, 2(3), 244—268.

Bale, T. L. (2015). Epigenetic and transgenerational reprogramming of brain development. Nature Reviews Neuroscience, 16(6), 332—344. http://dx.doi.org/10.1038/nrn3818.

Barbier, E., Tapocik, J. D., Juergens, N., Pitcairn, C., Borich, A., Schank, J. R., et al. (2015). DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity. Journal of Neuroscience, 35(15), 6153-6164. http://dx.doi.org/10.1523/JNEUROSCI.4571-14.2015.

Biermann, T., Reulbach, U., Lenz, B., Frieling, H., Muschler, M., Hillemacher, T., et al. (2009). N-methyl- D-aspartate 2b receptor subtype (NR2B) promoter methylation in patients during alcohol withdrawal. Journal of Neural Transmission, 116(5), 615-622. http://dx.doi.org/10.1007/s00702-009-0212-2.

Blasco, C., Caballeria, J., Deulofeu, R., Lligona, A., Pares, A., Lluis, J. M., et al. (2005). Prevalence and mechanisms of hyperhomocysteinemia in chronic alcoholics. Alcoholism, Clinical and Experimental Research, 29(6), 1044-1048.

Bleich, S., Lenz, B., Ziegenbein, M., Beutler, S., Frieling, H., Kornhuber, J., et al. (2006). Epigenetic DNA hypermethylation of the HERP gene promoter induces down-regulation of its mRNA expression in patients with alcohol dependence. Alcoholism, Clinical and Experimental Research, 30(4), 587-591. http://dx.doi.org/10.1111/j.1530-0277.2006.00068.x.

Bock, C., Tomazou, E. M., Brinkman, A. B., Muller, F., Simmer, F., Gu, H., et al. (2010). Quantitative comparison of genome-wide DNA methylation mapping technologies. Nature Biotechnology, 25(10), 1106-1114. http://dx.doi.org/10.1038/nbt.1681.

Bonsch, D., Lenz, B., Fiszer, R., Frieling, H., Kornhuber, J., & Bleich, S. (2006). Lowered DNA methyltrans- ferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. Journal of Neural Transmission, 113(9), 1299-1304. http://dx.doi.org/10.1007/ s00702-005-0413-2.

Bonsch, D., Lenz, B., Kornhuber, J., & Bleich, S. (2005). DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport, 16(2), 167—170.

Bonsch, D., Lenz, B., Reulbach, U., Kornhuber, J., & Bleich, S. (2004). Homocysteine associated genomic DNA hypermethylation in patients with chronic alcoholism. Journal of Neural Transmission, 111(12), 1611-1616. http://dx.doi.org/10.1007/s00702-004-0232-x.

Booth, M. J., Branco, M. R., Ficz, G., Oxley, D., Krueger, F, Reik, W., et al. (2012). Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science, 336(6083), 934937. http://dx.doi.org/10.1126/science.1220671.

Branco, M. R., Ficz, G., & Reik, W. (2012). Uncovering the role of 5-hydroxymethylcytosine in the epig- enome. Nature Reviews Genetics, 13(1), 7-13. http://dx.doi.org/10.1038/nrg3080 pii:nrg3080.

Choi, S. W, Stickel, F, Baik, H. W., Kim,Y. I., Seitz, H. K., & Mason, J. B. (1999). Chronic alcohol consumption induces genomic but not p53-specific DNA hypomethylation in rat colon. Journal of Nutrition, 129(11), 1945-1950.

Chorbov, V M., Todorov, A. A., Lynskey, M. T., & Cicero, T. J. (2011). Elevated levels of DNA methylation at the OPRM1 promoter in blood and sperm from male opioid addicts.Journal of Opioid Management, 7(4), 258-264.

Creyghton, M. P, Cheng, A. W, Welstead, G. G., Kooistra, T., Carey, B. W, Steine, E. J., et al. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21931-21936. http://dx.doi.org/ 10.1073/pnas.1016071107.

Day, J. J., Childs, D., Guzman-Karlsson, M. C., Kibe, M., Moulden, J., Song, E., et al. (2013). DNA methylation regulates associative reward learning. Nature Neuroscience, 16(10), 1445-1452. http://dx.doi.org/ 10.1038/nn.3504.

Day, J. J., & Sweatt, J. D. (2011). Epigenetic mechanisms in cognition. Neuron, 70(5), 813-829. http://dx.doi.org/10.1016Zj.neuron.2011.05.019.

Deng, J. V, Rodriguiz, R. M., Hutchinson, A. N., Kim, I. H., Wetsel, W. C., & West, A. E. (2010). MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nature Neuroscience, 13(9), 1128-1136. http://dx.doi.org/10.1038/nn.2614, pii:nn.2614.

Deng, J.V., Wan,Y., Wang, X., Cohen, S., Wetsel, W. C., Greenberg, M. E., et al. (2014). MeCP2 phosphorylation limits psychostimulant-induced behavioral and neuronal plasticity. Journal of Neuroscience, 34(13), 4519-4527. http://dx.doi.org/10.1523/JNEUROSCI.2821-13.2014.

Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 89-96. http://dx.doi.org/10.1038/nn.3594.

Dietz, D. M., Laplant, Q., Watts, E. L., Hodes, G. E., Russo, S. J., Feng, J., et al. (2011). Paternal transmission of stress-induced pathologies. Biological Psychiatry, 70(5), 408-414. http://dx.doi.org/10.1016/j.biopsych. 2011.05.005.

Ernst, J., Kheradpour, P, Mikkelsen, T. S., Shoresh, N., Ward, L. D., Epstein, C. B., et al. (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345), 43-49. http://dx.doi.org/10.1038/nature09906.

Feng, J., & Nestler, E. J. (2013). Epigenetic mechanisms of drug addiction. Current Opinion in Neurobiology. http://dx.doi.org/10.1016/j.conb.2013.01.001.

Feng, J., Shao, N., Szulwach, K. E., Vialou, V., Huynh, J., Zhong, C., et al. (2015). Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nature Neuroscience, 18(4), 536-544. http://dx.doi.org/ 10.1038/nn.3976.

Feng, J., Zhou,Y., Campbell, S. L., Le, T., Li, E., Sweatt, J. D., et al. (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience, 13(4), 423430. http://dx.doi.org/10.1038/nn.2514.

Gapp, K., Jawaid, A., Sarkies, P, Bohacek, J., Pelczar, P, Prados, J., et al. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 17(5), 667669. http://dx.doi.org/10.1038/nn.3695.

Garro, A. J., McBeth, D. L., Lima,V., & Lieber, C. S. (1991). Ethanol consumption inhibits fetal DNA meth- ylation in mice: implications for the fetal alcohol syndrome. Alcoholism, Clinical and Experimental Research, 15(3), 395-398.

Gavin, D. P., Kusumo, H., Sharma, R. P, Guizzetti, M., Guidotti, A., & Pandey, S. C. (2015). Gadd45b and N-methyl-D-aspartate induced DNA demethylation in postmitotic neurons. Epigenomics, 7(4), 567—579. http://dx.doi.org/10.2217/epi.15.12.

Globisch, D., Munzel, M., Muller, M., Michalakis, S., Wagner, M., Koch, S., et al. (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One, 5(12), e15367. http://dx.doi.org/10.1371/journal.pone.0015367.

Godino, A., Jayanthi, S., & Cadet, J. L. (2015). Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics, 10(7), 574—580. http://dx.doi.org/10.1080/15592294.2015.1055441.

Guidotti, A., Dong, E., Gavin, D. P, Veldic, M., Zhao, W, Bhaumik, D. K., et al. (2013). DNA methylation/ demethylation network expression in psychotic patients with a history of alcohol abuse. Alcoholism, Clinical and Experimental Research, 37(3), 417—424. http://dx.doi.org/10.1111/j.1530-0277.2012.01947.x.

Guo, J. U., Su, Y., Zhong, C., Ming, G. L., & Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423—434. http://dx.doi.org/ 10.1016/j.cell.2011.03.022, pii:S0092-8674(11)00299-6.

Hamid, A., Wani, N. A., & Kaur, J. (2009). New perspectives on folate transport in relation to alcoholism- induced folate malabsorption—association with epigenome stability and cancer development. FEBS Journal, 276(8), 2175-2191. http://dx.doi.org/10.1111/j.1742-4658.2009.06959.x.

Harlaar, N., Bryan, A. D., Thayer, R. E., Karoly, H. C., Oien, N., & Hutchison, K. E. (2014). Methylation of a CpG site near the ALDH1A2 gene is associated with loss of control over drinking and related phenotypes. Alcoholism, Clinical and Experimental Research, 38(3), 713-721. http://dx.doi.org/10.1111/ acer.12312.

He, Y. F., Li, B. Z., Li, Z., Liu, P, Wang, Y, Tang, Q., et al. (2011). Tet-mediated formation of 5-carboxylcyto- sine and its excision by TDG in mammalian DNA. Science, 333(6047), 1303-1307. http://dx.doi.org/ 10.1126/science.1210944, pii:science.1210944.

Heberlein, A., Muschler, M., Frieling, H., Behr, M., Eberlein, C., Wilhelm, J., et al. (2013). Epigenetic down regulation of nerve growth factor during alcohol withdrawal. Addiction Biology, 18(3), 508-510. http://dx.doi.org/10.1111/j.1369-1600.2010.00307.x.

Heller, E. A., Cates, H. M., Pena, C. J., Sun, H., Shao, N., Feng, J., et al. (2014). Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nature Neuroscience, 17(12), 1720-1727. http://dx.doi.org/10.1038/nn.3871.

Hillemacher, T., Frieling, H., Hartl, T., Wilhelm, J., Kornhuber, J., & Bleich, S. (2009). Promoter specific methylation of the dopamine transporter gene is altered in alcohol dependence and associated with craving Journal of Psychiatric Research, 43(4),388-392. http://dx.doi.org/10.1016Zj.jpsychires.2008.04.006.

Hillemacher, T., Frieling, H., Luber, K., Yazici, A., Muschler, M. A., Lenz, B., et al. (2009). Epigenetic regulation and gene expression of vasopressin and atrial natriuretic peptide in alcohol withdrawal. Psychoneuroendocrinology, 34(4), 555-560. http://dx.doi.org/10.1016/j.psyneuen.2008.10.019.

Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: the role of reward- related learning and memory. Annual Review of Neuroscience, 29, 565-598. http://dx.doi.org/10.1146/ annurev.neuro.29.051605.113009.

Im, H. I., Hollander, J. A., Bali, P, & Kenny, P. J. (2010). MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nature Neuroscience, 13(9), 1120-1127. http://dx.doi.org/10.1038/nn.2615, pii:nn.2615.

Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., et al. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047), 1300-1303. http://dx.doi.org/10.1126/science.1210597, pii:science.1210597.

Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl.), 245-254.

Jayanthi, S., McCoy, M. T., Chen, B., Britt, J. P., Kourrich, S., Yau, H. J., et al. (2014). Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biological Psychiatry, 76(1), 47-56. http://dx.doi.org/10.1016/j.biopsych.2013.09.034.

Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V, Ming, G. L., et al. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79(6), 1086-1093. http://dx.doi.org/10.1016/j.neuron.2013.08.032, pii:S0896-6273(13)00791-5.

Kalivas, P. W., & Volkow, N. D. (2011). New medications for drug addiction hiding in glutamatergic neuroplasticity. Molecular Psychiatry, 16(10), 974—986. http://dx.doi.org/10.1038/mp.2011.46.

Kenny, P J. (2014). Epigenetics, microRNA, and addiction. Dialogues in Clinical Neuroscience, 16(3), 335—344.

Koo, J. W., Mazei-Robison, M. S., Chaudhury, D., Juarez, B., LaPlant, Q., Ferguson, D., et al. (2012). BDNF is a negative modulator of morphine action. Science, 335(6103), 124—128. http://dx.doi.org/10.1126/ science.1222265.

Kriaucionis, S., & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929), 929-930.

Krishnan, H. R., Sakharkar, A. J., Teppen, T. L., Berkel, T. D., & Pandey, S. C. (2014). The epigenetic landscape of alcoholism. International Review of Neurobiology, 115, 75-116. http://dx.doi.org/10.1016/

B978-0-12-801311-3.00003-2.

Kyzar, E. J., & Pandey, S. C. (2015). Molecular mechanisms of synaptic remodeling in alcoholism. Neuroscience Letters. http://dx.doi.org/10.1016/j.neulet.2015.01.051.

LaPlant, Q., & Nestler, E. J. (2011). CRACKing the histone code: cocaine’s effects on chromatin structure and function. Hormones and Behavior, 59(3), 321-330. http://dx.doi.org/10.1016Zj.yhbeh.2010.05.015, pii:S0018-506X(10)00158-3.

LaPlant, Q., Vialou, V., Covington, H. E., 3rd, Dumitriu, D., Feng, J., Warren, B. L., et al. (2010). Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nature Neuroscience, 13(9), 1137-1143. http://dx.doi.org/10.1038/nn.2619, pii:nn.2619.

Li, X., Wei, W., Zhao, Q. Y., Widagdo, J., Baker-Andresen, D., Flavell, C. R., et al. (2014). Neocortical Tet3- mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proceedings of the National Academy of Sciences of the United States of America, 111(19), 7120-7125. http://dx.doi.org/ 10.1073/pnas.1318906111.

Lu, S. C., Huang, Z. Z., Yang, H., Mato, J. M., Avila, M. A., & Tsukamoto, H. (2000). Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. American Journal of Physiology Gastrointestinal and Liver Physiology, 279(1), G178-G185.

Lubin, F D., Gupta, S., Parrish, R. R., Grissom, N. M., & Davis, R. L. (2011). Epigenetic mechanisms: critical contributors to long-term memory formation. Neuroscientist, 17(6), 616-632. http://dx.doi.org/10.1177/ 1073858411386967.

Ma, D. K., Jang, M. H., Guo, J. U., Kitabatake, Y, Chang, M. L., Pow-Anpongkul, N., et al. (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323(5917), 1074—1077.

Manzardo, A. M., Henkhaus, R. S., & Butler, M. G. (2012). Global DNA promoter methylation in frontal cortex of alcoholics and controls. Gene, 498(1), 5-12. http://dx.doi.org/10.1016/j.gene.2012.01.096.

Marutha Ravindran, C. R., & Ticku, M. K. (2005). Role of CpG islands in the up-regulation of NMDA receptor NR2B gene expression following chronic ethanol treatment of cultured cortical neurons of mice. Neurochemistry International, 46(4), 313-327. http://dx.doi.org/10.1016/j.neuint.2004.10.004.

Massart, R., Barnea, R., Dikshtein, Y, Suderman, M., Meir, O., Hallett, M., et al. (2015). Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving. Journal of Neuroscience, 35(21), 8042-8058. http://dx.doi.org/10.1523/JNEUROSCI.3053-14.2015.

Maze, I., Feng, J., Wilkinson, M. B., Sun, H., Shen, L., & Nestler, E. J. (2011). Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3035-3040. http://dx.doi.org/10.1073/ pnas.1015483108, pii:1015483108.

Maze, I., & Nestler, E. J. (2011). The epigenetic landscape of addiction. Annals of the New York Academy of Sciences, 1216, 99-113. http://dx.doi.org/10.1111/j.1749-6632.2010.05893.x.

Maze, I., Shen, L., Zhang, B., Garcia, B. A., Shao, N., Mitchell, A., et al. (2014). Analytical tools and current challenges in the modern era of neuroepigenomics. Nature Neuroscience, 17(11), 1476-1490. http://dx.doi.org/10.1038/nn.3816.

Mikaelsson, M. A., & Miller, C. A. (2011). The path to epigenetic treatment of memory disorders. Neurobiology of Learning and Memory, 96(1), 13-18. http://dx.doi.org/10.1016/j.nlm.2011.02.003.

Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6), 857-869.

Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 38(1), 23—38. http://dx.doi.org/ 10.1038/npp.2012.112.

Nelson, E. D., & Monteggia, L. M. (2011). Epigenetics in the mature mammalian brain: effects on behavior and synaptic transmission. Neurobiology of Learning and Memory, 96(1), 53—60. http://dx.doi.org/ 10.1016/j.nlm.2011.02.015.

Nestler, E. J. (2001). Molecular basis of long-term plasticity underlying addiction. Nature Reviews Neuroscience, 2(2), 119-128. http://dx.doi.org/10.1038/35053570.

Niehrs, C., & Schafer, A. (2012). Active DNA demethylation by Gadd45 and DNA repair. Trends in Cell Biology, 22(4), 220-227. http://dx.doi.org/10.1016Zj.tcb.2012.01.002.

Nielsen, D. A., Huang, W, Hamon, S. C., Maili, L., Witkin, B. M., Fox, R. G., et al. (2012). Forced abstinence from cocaine self-administration is associated with DNA methylation changes in myelin genes in the corpus callosum: a preliminary study. Frontiers in Psychiatry, 3, 60. http://dx.doi.org/10.3389/fpsyt.2012.00060.

Nielsen, D. A., Utrankar, A., Reyes, J. A., Simons, D. D., & Kosten, T. R. (2012). Epigenetics of drug abuse: predisposition or response. Pharmacogenomics, 13(10), 1149-1160. http://dx.doi.org/10.2217/pgs.12.94.

Nielsen, D. A., Yuferov, V., Hamon, S., Jackson, C., Ho, A., Ott, J., et al. (2009). Increased OPRM1 DNA methylation in lymphocytes of methadone-maintained former heroin addicts. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 34(4), 867-873. http://dx.doi.org/ 10.1038/npp.2008.108 pii:npp2008108.

Numachi, Y., Shen, H., Yoshida, S., Fujiyama, K., Toda, S., Matsuoka, H., et al. (2007). Methamphetamine alters expression of DNA methyltransferase 1 mRNA in rat brain. Neuroscience Letters, 414(3), 213-217. http://dx.doi.org/10.1016/j.neulet.2006.12.052.

Ooi, S. K., & Bestor, T. H. (2008). The colorful history of active DNA demethylation. Cell, 133(7), 11451148.

Ouko, L. A., Shantikumar, K., Knezovich, J., Haycock, P., Schnugh, D. J., & Ramsay, M. (2009). Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG- DMR in male gametes: implications for fetal alcohol spectrum disorders. Alcoholism, Clinical and Experimental Research, 33(9), 1615-1627. http://dx.doi.org/10.1111/j.1530-0277.2009.00993.x.

Pastor, W. A., Aravind, L., & Rao, A. (2013). TETonic shift: biological roles ofTET proteins in DNA demethylation and transcription. Nature Reviews Molecular Cell Biology, 14(6), 341-356. http://dx.doi.org/ 10.1038/nrm3589, pii:nrm3589.

Philibert, R. A., Gunter, T. D., Beach, S. R., Brody, G. H., & Madan, A. (2008). MAOA methylation is associated with nicotine and alcohol dependence in women. American Journal of Medical Genetics Part B Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 147B(5), 565-570. http://dx.doi.org/10.1002/ajmg.b.30778.

Philibert, R. A., Penaluna, B., White, T., Shires, S., Gunter, T., Liesveld, J., et al. (2014). A pilot examination of the genome-wide DNA methylation signatures of subjects entering and exiting short-term alcohol dependence treatment programs. Epigenetics, 9(9), 1212-1219. http://dx.doi.org/10.4161/epi.32252.

Ponomarev, I. (2013). Epigenetic control of gene expression in the alcoholic brain. Alcohol Research, 35(1), 69-76.

Ponomarev, I., Wang, S., Zhang, L., Harris, R. A., & Mayfield, R. D. (2012). Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. Journal of Neuroscience, 32(5), 1884-1897. http://dx.doi.org/10.1523/JNEUROSCI.3136-11.2012.

Renthal, W., Kumar, A., Xiao, G., Wilkinson, M., Covington, H. E., 3rd, Maze, I., et al. (2009). Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron, 62(3), 335-348. http://dx.doi.org/10.1016/j.neuron.2009.03.026 pii:S0896-6273(09)00241-4.

Robison, A. J., & Nestler, E. J. (2011). Transcriptional and epigenetic mechanisms of addiction. Nature Reviews Neuroscience, 12(11), 623-637. http://dx.doi.org/10.1038/nrn3111, pii:nrn3111.

Rogge, G. A., & Wood, M. A. (2013). The role of histone acetylation in cocaine-induced neural plasticity and behavior. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 38(1), 94—110. http://dx.doi.org/10.1038/npp.2012.154.

Rudenko, A., Dawlaty, M. M., Seo, J., Cheng, A. W., Meng, J., Le, T., et al. (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction.Neuron, 79(6),1109-1122.http://dx.doi.org/ 10.1016/j.neuron.2013.08.003, pii:S0896-6273(13)00714-9.

Ruggeri, B., Nymberg, C., Vuoksimaa, E., Lourdusamy, A., Wong, C. P., Carvalho, F. M., et al. (2015). Association of protein phosphatase PPM1G with alcohol use disorder and brain activity during behavioral control in a genome-wide methylation analysis. American Journal of Psychiatry, 172(6), 543—552. http://dx.doi.org/10.1176/appi.ajp.2014.14030382.

Russo, S. J., & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9), 609-625. http://dx.doi.org/10.1038/nrn3381.

Sakharkar, A. J., Tang, L., Zhang, H., Chen, Y., Grayson, D. R., & Pandey, S. C. (2014). Effects of acute ethanol exposure on anxiety measures and epigenetic modifiers in the extended amygdala of adolescent rats. International Journal of Neuropsychopharmacology, 17(12), 2057-2067. http://dx.doi.org/10.1017/ S1461145714001047.

Schmidt, H. D., McGinty, J. F, West, A. E., & Sadri-Vakili, G. (2013). Epigenetics and psychostimulant addiction. Cold Spring Harbor Perspectives in Medicine, 3(3). http://dx.doi.org/10.1101/cshperspect.a012047 pii:a012047.

Shin, J., Ming, G. L., & Song, H. (2014). DNA modifications in the mammalian brain. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 369(1652). http://dx.doi.org/10.1098/ rstb.2013.0512.

Song, C. X., Szulwach, K. E., Dai, Q., Fu, Y, Mao, S. Q., Lin, L., et al. (2013). Genome-wide profiling of 5-for my lcy to sine reveals its roles in epigenetic priming. Cell, 153(3), 678-691. http://dx.doi.org/ 10.1016/j.cell.2013.04.001, pii:S0092-8674(13)00400-5.

Song, C. X., Szulwach, K. E., Fu, Y, Dai, Q., Yi, C., Li, X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnology, 29(1), 68-72. http://dx.doi.org/10.1038/nbt.1732.

Starkman, B. G., Sakharkar, A. J., & Pandey, S. C. (2012). Epigenetics-beyond the genome in alcoholism.

Alcohol Research, 34(3), 293-305.

Szulwach, K. E., Li, X., Li, Y, Song, C. X., Wu, H., Dai, Q., et al. (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 14(12), 1607-1616. http://dx.doi.org/10.1038/nn.2959.

Szutorisz, H., DiNieri, J. A., Sweet, E., Egervari, G., Michaelides, M., Carter, J. M., et al. (2014). Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 39(6), 1315-1323. http://dx.doi.org/10.1038/npp.2013.352.

Szwagierczak, A., Bultmann, S., Schmidt, C. S., Spada, F, & Leonhardt, H. (2010). Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Research, 38(19), e181. http://dx.doi.org/10.1093/nar/gkq684.

Tahiliani, M., Koh, K. P., Shen, Y, Pastor, W A., Bandukwala, H., Brudno, Y., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930-935.

Taqi, M. M., Bazov, I., Watanabe, H., Sheedy, D., Harper, C., Alkass, K., et al. (2011). Prodynorphin CpG- SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Addiction Biology, 16(3), 499-509. http://dx.doi.org/10.1111/j.1369-1600.2011.00323.x.

Tian, W, Zhao, M., Li, M., Song, T., Zhang, M., Quan, L., et al. (2012). Reversal of cocaine-conditioned place preference through methyl supplementation in mice: altering global DNA methylation in the prefrontal cortex. PLoS One, 7(3), e33435. http://dx.doi.org/10.1371/journal.pone.0033435.

Tuesta, L. M., & Zhang, Y (2014). Mechanisms of epigenetic memory and addiction. EMBOJournal, 33(10), 1091-1103. http://dx.doi.org/10.1002/embj.201488106.

Vassoler, F M., White, S. L., Schmidt, H. D., Sadri-Vakili, G., & Pierce, R. C. (2013). Epigenetic inheritance of a cocaine-resistance phenotype. Nature Neuroscience, 16(1),42-47.http://dx.doi.org/10.1038/nn.3280.

Walker, D. M., Cates, H. M., Heller, E. A., & Nestler, E. J. (2015). Regulation of chromatin states by drugs of abuse. Current Opinion in Neurobiology, 30, 112-121. http://dx.doi.org/10.1016/jxonb.2014.11.002.

Watson, C. T., Szutorisz, H., Garg, P., Martin, Q., Landry, J. A., Sharp, A. J., et al. (2015). Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with crossgenerational effects of adolescent THC exposure. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. http://dx.doi.org/10.1038/npp.2015.155.

Wright, K. N., Hollis, F., Duclot, F, Dossat, A. M., Strong, C. E., Francis, T. C., et al. (2015). Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA meth- ylation-dependent manner. Journal of Neuroscience, 35(23), 8948—8958. http://dx.doi.org/10.1523/ JNEUROSCI.5227-14.2015.

Wu, H., Wu, X., Shen, L., & Zhang, Y. (2014). Single-base resolution analysis of active DNA demethyl- ation using methylase-assisted bisulfite sequencing. Nature Biotechnology, 32(12), 1231—1240. http://dx.doi.org/10.1038/nbt.3073.

Wu, H., & Zhang, Y. (2011). Mechanisms and functions ofTet protein-mediated 5-methylcytosine oxidation. Genes and Development, 25(23), 2436—2452. http://dx.doi.org/10.1101/gad.179184.111.

Yu, M., Hon, G. C., Szulwach, K. E., Song, C. X., Zhang, L., Kim, A., et al. (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell, 149(6), 1368—1380. http://dx.doi.org/ 10.1016/j.cell.2012.04.027.

Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis.

Statistical Applications in Genetics and Molecular Biology, 4. http://dx.doi.org/10.2202/1544-6115.1128 (Article17).

Zhang, H., Herman, A. I., Kranzler, H. R., Anton, R. F, Simen, A. A., & Gelernter, J. (2012). Hypermethyl- ation of OPRM1 promoter region in European Americans with alcohol dependence. Journal of Human Genetics, 57(10), 670—675. http://dx.doi.org/10.1038/jhg.2012.98.

Zhang, H., Herman, A. I., Kranzler, H. R., Anton, R. F., Zhao, H., Zheng, W., et al. (2013). Array-based profiling of DNA methylation changes associated with alcohol dependence. Alcoholism, Clinical and Experimental Research, 37(Suppl. 1), E108-E115. http://dx.doi.org/10.1111/j.1530-0277.2012.01928.x.

Zhang, H., Wang, F., Kranzler, H. R., Yang, C., Xu, H., Wang, Z., et al. (2014). Identification of methylation quantitative trait loci (mQTLs) influencing promoter DNA methylation of alcohol dependence risk genes. Human Genetics, 133(9), 1093—1104. http://dx.doi.org/10.1007/s00439-014-1452-2.

Zhang, R., Miao, Q., Wang, C., Zhao, R., Li, W, Haile, C. N., et al. (2013). Genome-wide DNA methylation analysis in alcohol dependence. Addiction Biology, 18(2), 392—403. http://dx.doi.org/10.1111/adb.12037.

Zhang, R. R., Cui, Q. Y, Murai, K., Lim, Y C., Smith, Z. D., Jin, S., et al. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13(2), 237—245. http://dx.doi.org/10.1016/ j.stem.2013.05.006, pii:S1934-5909(13)00199-9.

Zhang, X., Kusumo, H., Sakharkar, A. J., Pandey, S. C., & Guizzetti, M. (2014). Regulation of DNA methylation by ethanol induces tissue plasminogen activator expression in astrocytes.Journal of Neurochemistry, 128(3), 344—349. http://dx.doi.org/10.1111/jnc.12465.

Zhou, Z., Yuan, Q., Mash, D. C., & Goldman, D. (2011). Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6626—6631. http://dx.doi.org/ 10.1073/pnas.1018514108.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel