Menu
Home
Log in / Register
 
Home arrow Health arrow DNA Modifications in the Brain. Neuroepigenetic Regulation of Gene Expression
Source

REFERENCES

Babbitt, G. A., Coppola, E. E., Alawad, M. A., & Hudson, A. O. (2016). Can all heritable biology really be reduced to a single dimension? Gene, 578, 162-168. http://dx.doi.org/10.1016/j.gene.2015.12.043.

Baker-Andresen, D., Ratnu, V S., & Bredy, T. W. (2013). Dynamic DNA methylation: a prime candidate for genomic metaplasticity and behavioral adaptation. Trends in Neurosciences, 36, 3-13. http://dx.doi.org/ 10.1016/j.tins.2012.09.003.

Bettecken, T., Frenkel, Z. M., & Trifonov, E. N. (2011). Human nucleosomes: special role of CG dinucleotides and Alu-nucleosomes. BMC Genomics, 12, 273. http://dx.doi.org/10.1186/1471-2164-12-273.

Castro-Perez, E., et al. (2016). Identification and characterization of theV(D)J recombination activating gene 1 in long-term memory of context fear conditioning. Neural Plasticity, 2016, 1752176. http://dx.doi.org/ 10.1155/2016/1752176.

Choy, J. S., et al. (2010). DNA methylation increases nucleosome compaction and rigidity. Journal of the American Chemical Society, 132, 1782-1783. http://dx.doi.org/10.1021/ja910264z.

Colon-Cesario, M., et al. (2006). An inhibitor of DNA recombination blocks memory consolidation, but not reconsolidation, in context fear conditioning. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 26, 5524—5533. http://dx.doi.org/10.1523/JNEUR0SCI.3050-05.2006.

De, S., & Michor, F. (2011). DNA secondary structures and epigenetic determinants of cancer genome evolution. Nature Structural & Molecular Biology, 18, 950-955. http://dx.doi.org/10.1038/nsmb.2089.

Dominissini, D., et al. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A- seq. Nature, 485, 201—206. http://dx.doi.org/10.1038/nature11112.

Dominissini, D., et al. (2016). The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature, 530, 441-446. http://dx.doi.org/10.1038/nature16998.

Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 1258096. http://dx.doi.org/10.1126/science.1258096.

Ernst, J., et al. (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473, 43-49. http://dx.doi.org/10.1038/nature09906.

Ernst, R. J., Komor, A. C., & Barton, J. K. (2011). Selective cytotoxicity of rhodium metalloinsertors in mismatch repair-deficient cells. Biochemistry, 50, 10919-10928. http://dx.doi.org/10.1021/bi2015822.

Feschotte, C. (2008). Transposable elements and the evolution of regulatory networks. Nature Reviews. Genetics, 9, 397-405. http://dx.doi.org/10.1038/nrg2337.

Franchini, D. M., & Petersen-Mahrt, S. K. (2014). AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics, 6, 427-443. http://dx.doi.org/10.2217/epi.14.35.

Franchini, D. M., et al. (2014). Processive DNA demethylation via DNA deaminase-induced lesion resolution. PLoS One, 9, e97754. http://dx.doi.org/10.1371/journal.pone.0097754.

Fu, Y, Dominissini, D., Rechavi, G., & He, C. (2014). Gene expression regulation mediated through reversible m(6)A RNA methylation. Nature Reviews. Genetics, 15, 293-306. http://dx.doi.org/10.1038/nrg3724.

Fu, Y, Dominissini, D., Rechavi, G., & He, C., et al. (2015). N6-methyldeoxyadenosine marks active transcription start sites in chlamydomonas. Cell, 161,879-892.http://dx.doi.org/10.1016/j.cell.2015.04.010.

Greer, E. L., et al. (2015). Dna methylation on N6-Adenine in C. elegans. Cell, 161, 868-878. http://dx.doi.org/10.1016/jxell.2015.04.005.

Guez-Barber, D. , et al. (2012). FACS purification of immunolabeled cell types from adult rat brainC. elegans.

Journal of Neuroscience Methods, 203, 10-18. http://dx.doi.org/10.1016/jjneumeth.2011.08.045.

Guo, J. U., et al. (2011). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14, 1345-1351. http://dx.doi.org/10.1038/nn.2900.

Guo, J. U., Su, Y, Zhong, C., Ming, G. L., & Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145, 423-434. http://dx.doi.org/ 10.1016/j.cell.2011.03.022.

Harteis, S. , Su, Y., Zhong, C., Ming, G. L., & Schneider, S. (2014). Making the bend: DNA tertiary structure and protein-DNA interactions. International Journal of Molecular Sciences, 15, 12335-12363. http://dx.doi.org/10.3390/ijms150712335.

Hata, K., & Sakaki, Y. (1997). Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene, 189, 227-234. http://dx.doi.org/10.3390/ijms150712335.

Hazen, J. L., Faust, G. G., Rodriguez, A. R., Ferguson, W C., Shumilina, S., Clark, R. A., et al. (March 16, 2016). The complete genome sequences, unique mutational spectra, and developmental potency of adult neurons revealed by cloning. Neuron, 89(6), 1223-1236. http://dx.doi.org/10.1016/j.neuron.2016.02.004.

Heddi, B., & Abi-Ghanem, J., Lavigne, M., & Hartmann, B. (2010). Sequence-dependent DNA flexibility mediates DNase I cleavage.Journal ofMolecular Biology, 395,123-133.http://dx.doi.org/10.1016/j.jmb.2009.10.023.

Heller, E. A., Abi-Ghanem, J., Lavigne, M., & Hartmann, B., et al. (2014). Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nature Neuroscience, 17, 1720-1727. http://dx.doi.org/10.1038/nn.3871.

Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262-1278. http://dx.doi.org/10.1016/jxell.2014.05.010.

Kaas, G. A., Lander, E. S., & Zhang, F, et al. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79, 1086-1093. http://dx.doi.org/10.1016/j.neuron.2013.08.032.

Kano, H. , et al. (2009). L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism.

Genes & Development, 23, 1303-1312. http://dx.doi.org/10.1101/gad.1803909.

Korlach, J., & Turner, S. W. (2012). Going beyond five bases in DNA sequencing. Current Opinion in Structural Biology, 22, 251-261. http://dx.doi.org/10.10167j.sbi.2012.04.002.

Koziol, M. J., & Turner, S. W., et al. (2016). Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications.Nature Structural & Molecular Biology, 23,24-30.http://dx.doi.org/ 10.1038/nsmb.3145.

Kubota, M. , Tran, C., & Spitale, R. C. (2015). Progress and challenges for chemical probing of RNA structure inside living cells. Nature Chemical Biology, 11,933—941. http://dx.doi.org/10.1038/nchembio.1958.

Li, J., Tran, C., & Chen, P R. (2016). Development and application of bond cleavage reactions in bioorthogonal chemistry. Nature Chemical Biology, 12, 129—137. http://dx.doi.org/10.1038/nchembio.2024.

Li, X., & Chen, P R., et al. (2014). Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proceedings of the National Academy of Sciences USA, 111, 7120— 7125. http://dx.doi.org/10.1073/pnas.1318906111.

Li, X., Baker-Andresen, D., Zhao, Q., Marshall, V., & Bredy, T. W. (2014). Methyl CpG binding domain ultra-sequencing: a novel method for identifying inter-individual and cell-type-specific variation in DNA methylation. Genes, Brain, and Behavior, 13, 721—731. http://dx.doi.org/10.1111/gbb.12150.

Lister, R., Baker-Andresen, D., Zhao, Q., Marshall, V., & Bredy, T. W., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341, 1237905. http://dx.doi.org/ 10.1126/science.1237905.

Liu, K., et al., (June 2016). Structural and functional characterization of the proteins responsible for N6-Methyladenosine modification and recognition, Current Protein & Peptide Science, 17(4), 306—318.

Lodato, M. A., et al. (2015). Somatic mutation in single human neurons tracks developmental and transcriptional history. Science, 350, 94—98. http://dx.doi.org/10.1126/science.aab1785.

Ma, D. K., et al. (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323, 1074—1077. http://dx.doi.org/10.1126/science.1166859.

Machnicka, M. A., et al. (2013). MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Research, 41, D262—D267. http://dx.doi.org/10.1093/nar/gks1007.

Madabhushi, R., et al. (2015). Activity-induced DNA breaks govern the expression of neuronal early- response genes. Cell, 161, 1592—1605. http://dx.doi.org/10.1016/j.cell.2015.05.032.

Matrisciano, F., Dong, E., Gavin, D. P, Nicoletti, F, & Guidotti, A. (2011). Activation of group II metabotropic glutamate receptors promotes DNA demethylation in the mouse brain. Molecular Pharmacology, 80,174—182. http://dx.doi.org/10.1124/mol.110.070896.

Maze, I., Dong, E., Gavin, D. P, Nicoletti, F., & Guidotti, A., et al. (2011). Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proceedings of the National Academy of Sciences USA, 108, 3035—3040. http://dx.doi.org/10.1073/pnas.1015483108.

Meyer, K. D., & Jaffrey, S. R. (2014). The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nature Reviews. Molecular Cell Biology, 15, 313—326. http://dx.doi.org/10.1038/nrm3785.

Meyer, K. D., & Jaffrey, S. R., et al. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3’UTRs and near stop codons. Cell, 149,1635-1646 .http://dx.doi.org/10.1016/j.cell.2012.05.003.

Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857-869. http://dx.doi.org/10.10167j.neuron.2007.02.022.

Muotri, A. R., & Zhao, C. , Marchetto, M. C., & Gage, F. H. (2009). Environmental influence on L1 retrotrans- posons in the adult hippocampus. Hippocampus, 19, 1002-1007. http://dx.doi.org/10.1002/hipo.20564.

Muotri, A. R., Zhao, C., Marchetto, M. C., & Gage, F. H., et al. (2010). L1 retrotransposition in neurons is modulated by MeCP2. Nature, 468, 443-446. http://dx.doi.org/10.1038/nature09544.

Murat, P , & Balasubramanian, S. (2014). Existence and consequences of G-quadruplex structures in DNA. Current Opinion in Genetics & Development, 25, 22-29. http://dx.doi.org/10.1016Zj.gde.2013.10.012.

Nabel, C. S., & Balasubramanian, S., et al. (2012). AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nature Chemical Biology, 8, 751-758. http://dx.doi.org/ 10.1038/nchembio.1042.

Nabel, C. S., Manning, S. A., & Kohli, R. M. (2012). The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential. ACS Chemical Biology, 7, 20-30. http://dx.doi.org/10.1021/cb2002895.

Nathan, D. , Manning, S. A., & Crothers, D. M. (2002). Bending and flexibility of methylated and unmethylated EcoRI DNA. Journal of Molecular Biology, 316, 7-17. http://dx.doi.org/10.1006/jmbi.2001.5247.

Nickol, J., & Behe, M. , & Felsenfeld, G. (1982). Effect of the B-Z transition in poly(dG-m5dC). poly(dG- m5dC) on nucleosome formation. Proceedings of the National Academy of Sciences USA, 79, 1771-1775. http://dx.doi.org/10.1006/jmbi.2001.5247.

Oh, D. B., Kim,Y. G., & Rich, A. (2002). Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proceedings of the National Academy of Sciences USA, 99, 16666-16671. http://dx.doi.org/ 10.1073/pnas.262672699.

Parker, S. C., Hansen, L. , & Abaan, H. O., Tullius, T. D., & Margulies, E. H. (2009). Local DNA topography correlates with functional noncoding regions of the human genome. Science, 324, 389—392. http://dx.doi.org/10.1126/science.1169050.

Raiber, E. A., Hansen, L., Abaan, H. O., Tullius, T. D., & Margulies, E. H., et al. (2015). 5-Formylcytosine alters the structure of the DNA double helix. Nature Structural & Molecular Biology, 22, 44—49.http://dx.doi.org/ 10.1038/nsmb.2936.

Rich, A. , & Zhang, S. (2003). Timeline: Z-DNA: the long road to biological function. Nature Reviews. Genetics, 4, 566-572. http://dx.doi.org/10.1038/nrg1115.

Rohs, R., & Zhang, S., et al. (2009). The role of DNA shape in protein-DNA recognition. Nature, 461, 1248-1253. http://dx.doi.org/10.1038/nature08473.

Rohs, R., West, S. M., Liu, P, & Honig, B. (2009). Nuance in the double-helix and its role in protein-DNA recognition. Current Opinion in Structural Biology, 19, 171-177. http://dx.doi.org/10.1016/j.sbi.2009.03.002.

Roundtree, I. A., West, S. M., Liu, P., & He, C. (2016). RNA epigenetics-chemical messages for posttranscriptional gene regulation. Current Opinion in Chemical Biology, 30, 46-51. http://dx.doi.org/ 10.1016/j.cbpa.2015.10.024.

Rudenko, A. , & He, C., et al. (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79, 1109-1122. http://dx.doi.org/10.1016Zj.neuron.2013.08.003.

Saavedra-Rodriguez, L., et al. (2009). Identification of flap structure-specific endonuclease 1 as a factor involved in long-term memory formation of aversive learning. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29, 5726-5737. http://dx.doi.org/10.1523/JNEUROSCI.4033-08.2009.

Saletore,Y., et al. (2012). The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biology, 13, 175-5737. http://dx.doi.org/10.1186/gb-2012-13-10-175.

Sletten, E. M., & Bertozzi, C. R. (2011). From mechanism to mouse: a tale of two bioorthogonal reactions. Accounts of Chemical Research, 44, 666-676. http://dx.doi.org/10.1021/ar200148z.

Spitale, R. C., & Bertozzi, C. R., et al. (2015). Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 519, 486-490. http://dx.doi.org/10.1038/nature14263.

Szulwach, K. E., et al. (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 14, 1607-1616. http://dx.doi.org/10.1038/nn.2959.

Upton, K. R., et al. (2015). Ubiquitous L1 mosaicism in hippocampal neurons. Cell, 161, 228-239. http://dx.doi.org/10.1016/j.cell.2015.03.026.

Wang, A. H., et al. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282, 680-686. http://dx.doi.org/10.1016/j.cell.2015.03.026.

Wang, S. , et al. (2014). Systematic investigations of different cytosine modifications on CpG dinucleotide sequences: the effects on the B-Z transition. Journal of the American Chemical Society, 136, 56-59. http://dx.doi.org/10.1021/ja4107012.

Wang, X., et al. (2015). N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell, 161, 1388-1399. http://dx.doi.org/10.1016/jxell.2015.05.014.

Wu, H., et al. (2010). Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science, 329, 444-448. http://dx.doi.org/10.1126/science.1190485.

Xie, W., et al. (2012). Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 148, 816-831. http://dx.doi.org/10.1016/jxell.2011.12.035.

Xu, Y., et al. (2012). Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes forXenopuseyeandneuraldevelopment. Cell, 151,1200-1213. http://dx.doi.org/10.1016/jxell.2012.11.014.

Yu, M., et al. (2012). Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nature Protocols, 7, 2159-2170. http://dx.doi.org/10.1038/nprot.2012.137.

Yu, F., Zingler, N., Schumann, G., & Stratling, W. H. (November 1, 2001). Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Research, 29(21), 4493-4501.

Zhang, G., et al. (2015). N6-methyladenine DNA modification in Drosophila. Cell, 161, 893-906. http://dx.doi.org/10.1016/j.cell.2015.04.018.

Zhou, H., et al. (2015). New insights into Hoogsteen base pairs in DNA duplexes from a structure-based surveyDrosophila. Nucleic Acids Research, 43, 3420-3433. http://dx.doi.org/10.1093/nar/gkv241.

Zhou, K. I., et al. (2015). N-Methyladenosine modification in a long noncoding RNA Hairpin Predisposes its conformation to protein binding. Journal of Molecular Biology, 43. , 3420-3433. http://dx.doi.org/ 10.1016/j.jmb.2015.08.021.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel