The dissolution of solid Dy2O3 in molten CaCl2 was investigated by CSLM. Results illustrated that it dissolves only slightly within 2 h. The SEM results suggested that Dy2O3 is stable in molten CaCl2 at 1173 K (900 °C) and no other compounds (like e.g. DyOCl) were detected after quenching. This make Dy2O3 a good candidate for the direct electro-reduction to metal. The electrochemical behavior of dysprosium oxide at a solid molybdenum and a liquid tin cathode were investigated by cyclic voltammetry in a CaCl2 melt at 1173 K (900 °C). Two reduction steps can be noticed for Dy2O3 on a solid Mo electrode but only a single step was found on a liquid Sn electrode.

Acknowledgements The authors thank KU Leuven for financial support (IOF-KP Rare3 project). The authors thank Joris Van Dyck and Joop Van Deursen for their technical assistance.


  • 1. Y. L. Yaropolov, A. S. Andreenko, S. A. Nikitin, S. S. Agafonov, V. P. Glazkov, V. N. Verbetsky, “Structure and magnetic properties of RNi (R = Gd, Tb, Dy, Sm) and R6M167Si3 (R = Ce, Gd, Tb; M = Ni, Co) hydrides”, J. Alloys Compd., 509(2011), S830-S834.
  • 2. Y. Castrillejo, M. R. Bermejo, A. I. Barrado, R. Pardo, E. Barrado, A. M. Martinez, “Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and Al electrodes”, Electrochim. Acta, 50(2005),2047-2057.
  • 3. H. Zhu, Rare earth metal production by molten salt electrolysis, Encyclopedia of Applied Electrochemistry, (New York, NY, Springer 2014), 1765.
  • 4. G. Z. Chen, D. J. Fray, T. W. Farthing, “Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride”, Nature, 407(2001), 361-364.
  • 5. P. Kim, H. Xie, Y. Zhai, X. Zou, X. Lang, “Direct electrochemical reduction of Dy2O3 in CaCl2 melt”, J. Appl. Electrochem., 42(4)(2012), 257-262.
  • 6. H. Xie, P. Kim, J. Wang, Y. Zhai, X. Zou, X. Lang, “Study on the electrodeoxidation of solid Dy2O3 in molten CaCl2”, Adv. Mater. Res., 391(2011), 955-959.
  • 7. S. Feichtinger, S. K. Michelic, Y. Kang, C. Bernhard, “In-situ observation of the dissolution of SiO2 particles in CaO-Al2O3-SiO2 slags and mathematical analysis of its dissolution pattern”, J. Am. Cera. Soc., 97(1)(2014), 316-325.
  • 8. C. Orrling, S. Sridhar, A. Cramb, “In-situ observation of the role of alumina particles on the crystallization behavior of slags”, ISIJ Int., 40(2000), 877-885.
  • 9. F. Verhaeghe, J. Liu, M. Guo, S. Arnout, B. Blanpain, P. Wollants, “Dissolution and diffusion behavior of Al2O3 in a CaO-Al2O3-SiO2 liquid: An experimental-numerical approach”, Appl. Phys. Lett., 91(2007), 1241041-1241043.
  • 10. F. Verhaeghe, S. Arnout, B. Blanpain, P. Wollants, “Lattice Boltzmann model for diffusion-controlled dissolution of solid structures in multicomponent liquids”, Phys. Rev., 72(2005), 0363081-0363084.
  • 11. D. Wang, X. Jin, G. Z. Chen, “Solid state reactions: an electrochemical approach in molten salts”, Annu. Rep. Prog. Chem. Sect. C: Phys. Chem., 104(2008), 189-234.
  • 12. M. E. Sibert, Q. H. Mckenna, M. A. Steinberg, E. Wainer, “Electrolytic reduction of titanium monoxide”, J. Electrochem. Soc., 102(5)(1955), 252-262.
< Prev   CONTENTS   Source   Next >