Menu
Home
Log in / Register
 
Home arrow Computer Science arrow Computational systems pharmacology and toxicology
Source

Conclusions

GMD of chemicals involves the ability to use several tools both in chemical design and toxicological evaluation. There is a need for a new and innovative tool that allows chemists the ability to add proposed chemical structures in a variety of formats and to automatically calculate and predict key endpoints to aid in new chemical design. A proposed “freemium” model that provides an on-line interface with the ability to be coupled with various open-access and subscription based tools would be ideal. The tool could be used both in academics and industry and would provide an exceptional educational model for chemistry students.

References

  • 1. p. J. Dunn, the importance of green chemistry in process research and development, Chem. Soc. Rev., 2012, 41, 1452-1461, DOI: 10.1039/ c1cs15041c.
  • 2. M. J. Mulvihill, E. S. Beach, J. B. Zimmerman and P. T. Anastas, Green chemistry and green engineering: a framework for sustainable technology development, Annu. Rev. Environ. Resour., 2011, 36, 271-293, DOI: 10.1146/annurev-environ-032009-095500.
  • 3. A. M. Voutchkova, T. G. Osimitz and P. T. Anastas, Toward a comprehensive molecular design framework for reduced hazard, Chem. Rev., 2010, 110, 5845-5882, DOI: 10.1021/cr9003105.
  • 4. M. E. Andersen and D. Krewski, The vision of toxicity testing in the 21st century: moving from discussion to action, Toxicol. Sci., 2010, 117, 17-24, DOI: 10.1093/toxsci/kfq188.
  • 5. C. O. T. Testing, A. O. E. Agents, B. O. E. Studies, Toxicology, Institute for Laboratory Animal Research, D. O. Earth and L. Studies National Research Council, Toxicity Testing in the 21st Century: a Vision and a Strategy, National Academies Press, Washington, D.C., 2007, DOI: 10.17226/11970.
  • 6. A. Worth, J. Barroso, S. Bremer, J. Burton, S. Casati, S. Coecke, R. Corvi, B. Desprez, C. Dumont, V. Gouliarmou, M. Goumenou, R. Grapel, C. Griesinger, M. Halder, A. Janusch Roi, A. Kienzler, F. Madia, S. Munn, M. Nepelska, A. Paini, A. Price, P. Prieto, A. Rolaki, M. Schaffer, J. Triebe, M. Whelan, C. Wittwehr, V. Zuang and Institute for Health and C. Protection, Alternative Methods for Regulatory Toxicology a State-of-the-Art Review, Publications Office, Luxembourg, 2014, DOI: 10.2788/11111.
  • 7. C. L. Russom, S. P. Bradbury, S. J. Broderius, D. J. Hammermeister, R. A. Drummond and G. D. Veith, Predicting modes of toxic action from chemical structure, Environ. Toxicol. Chem., 2013, 32, 1441-1442, DOI: 10.1002/etc.2249.
  • 8. C. Dumont, P. Prieto, D. Asturiol and A. Worth, Review of the availability of in vitro and in silico methods for assessing dermal bioavailability, Appl. In Vitro Toxicol., 2015, 1(2), 147-164, DOI: 10.1089/aivt.2015.0003.
  • 9. A. M. Voutchkova, L. A. Ferris, J. B. Zimmerman and P. T. Anastas, Toward molecular design for hazard reduction-fundamental relationships between chemical properties and toxicity, Tetrahedron, 2010, 66, 1031-1039.
  • 10. D. K. Curtis, O. A. Mary and D. John, Casarett and Doull's Toxicology: the Basic Science of Poisons, Mc Graw-Hill, USA, 2001.
  • 11. N. G. Bakhtyari, G. Raitano, E. Benfenati, T. Martin and D. Young, Comparison of in silico models for prediction of Mutagenicity, J. Environ. Sci. Health, Part C, 2013, 31, 45-66, DOI: 10.1080/10590501.2013.763576.
  • 12. G. F. Mangiatordi, D. Alberga, C. D. Altomare, A. Carotti, M. Catto, S. Cel- lamare, D. Gadaleta, G. Lattanzi, F. Leonetti, L. Pisani, A. Stefanachi, D. Trisciuzzi and O. Nicolotti, Mind the Gap! A Journey towards Computational Toxicology, Mol. Inf., 2016, 35, 294.
  • 13. T. Hou, J. Wang, W. Zhang and X. Xu, ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules?,J. Chem. Inf. Model., 2007, 47, 460-463, DOI: 10.1021/ci6003515.
  • 14. C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Delivery Rev., 1997, 64, 4-17, DOI: 10.1016/j.addr.2012.09.019.
  • 15. D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward and K. D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, Med. Chem., 2002, 45, 2615-2623, DOI: 10.1021/jm020017n.
  • 16. J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick and J. R. Grove, MCDK (Madin-Darby Canine Kidney) cells: a tool for membrane permeability screening, J. Pharm. Sci., 1999, 88, 28-33, DOI: 10.1021/js9803205.
  • 17. A.-L. B. Ungell, Caco-2 replace or refine? Drug Discovery Today: Technol., 2004, 1, 423-430, DOI: 10.1016/j.ddtec.2004.11.003.
  • 18. A. Cassano, G. Raitano, E. Mombelli, A. Fernandez, J. Cester, A. Ronca- glioni and E. Benfenati, Evaluation of QSAR models for the prediction of Ames genotoxicity: a retrospective exercise on the chemical substances registered under the EU REACH regulation, J. Environ. Sci. Health, Part C, 2014, 32, 273-298, DOI: 10.1080/10590501.2014.938955.
  • 19. J. McCann and B. N. Ames, Detection of carcinogens as mutagens in the salmonella/microsome test: assay of 300 chemicals: discussion, Proc. Natl. Acad. Sci. U. S. A., 1976, 73, 50-54.
  • 20. R. M. Walmsley and N. Billinton, How accurate is in vitro prediction of carcinogenicity? Br. J. Pharmacol., 2011, 162, 1250-1258, DOI: 10.1111/j.1476-5381.2010.01131.x.
  • 21. D. Kirkland, M. Aardema, L. Henderson and L. Muller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens: I. Sensitivity, specificity and relative predictivity, Mutat. Res., 2005, 584, 1-256, DOI: 10.1016/j. mrgentox.2005.02.004.
  • 22. N. J. Abbott, Blood-brain barrier structure and function and the challenges for CNS drug delivery, J. Inherited Metab. Dis., 2013, 36, 437-449, DOI: 10.1007/s10545-013-9608-0.
  • 23. B. J. Aungst, Absorption enhancers: applications and advances, AAPS J.,
  • 2012, 14, 10-18, DOI: 10.1208/s12248-011-9307-4.
  • 24. B. Obermeier, R. Daneman and R. M. Ransohoff, Development, maintenance and disruption o the blood-brain barrier, Nat. Med., 2013, 19, 584-1596, DOI: 10.1038/nm.3407.
  • 25. N. Strazielle and J.-F. O. Ghersi-Egea, Factors affecting delivery of antiviral drugs to the brain, Rev. Med. Virol., 2005, 15, 105-133, DOI: 10.1002/ rmv.454.
  • 26. C. Suenderhauf, F. Hammann and J. Huwyler, Computational prediction of blood-brain barrier permeability using decision tree induction, Molecules, 2012, 17, 10429-10445, DOI: 10.3390/molecules170910429.
  • 27. S. Modi, M. Hughes, A. Garrow and A. White, The value of in silico chemistry in the safety assessment of chemicals in the consumer goods and pharmaceutical industries, Drug Discovery Today, 2012, 17, 135-142, DOI: 10.1016/j.drudis.2011.10.022.
  • 28. A. Sutter, A. Amberg, S. Boyer, A. Brigo, J. F. Contrera, L. L. Custer, K. L. Dobo, V. Gervais, S. Glowienke, J. V. Gompel, N. Greene, W. Muster, J. Nicolette, M. V. Reddy, V. Thybaud, E. Vock, A. T. White and L. Muller, Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities, Regul. Toxicol. Pharmacol.,
  • 2013, 67, 39-52, DOI: 10.1016/j.yrtph.2013.05.001.
  • 29. Y. Low, A. Sedykh, D. Fourches, A. Golbraikh, M. Whelan, I. Rusyn and A. Tropsha, Integrative chemical-biological read-across approach for chemical hazard classification, Chem. Res. Toxicol., 2013, 26, 1199-1208, DOI: 10.1021/tx400110f.
  • 30. C. A. Marchant, K. A. Briggs and A. Long, In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for Windows, Meteor, and Vitic, Toxicol. Mech. Methods, 2008, 18, 177-187, DOI: 10.1080/15376510701857320.
  • 31. P. N. Judson and J. D. Vessey, A comprehensive approach to argumentation, J. Chem. Inf. Comput. Sci., 2003, 43, 1356-1365, DOI: 10.1021/ ci020271o.
  • 32. P. N. Judson, C. A. Marchant and J. D. Vessey, Using argumentation for absolute reasoning about the potential toxicity of chemicals, J. Chem. Inf. Comput. Sci., 2003, 43, 1364-1370, DOI: 10.1021/ci020272g.
  • 33. H. Glatt, R. Jung and F. Oesch, Bacterial mutagenicity investigation of epoxides: drugs, drug metabolites, steroids and pesticides, Mutat. Res., 1983, Ill, 99-118, DOI: 10.1016/0027-5107(83)90056-8.
  • 34. R. Lang and R. Reinmann, Studies for a genotoxic potential of some endogenous and exogenous sex steroids. I. Communication: examination for the induction of gene mutations using Ames Salmonella/ microsome test and the HGPRT test in V79 cells, Environ. Mol. Mutagen., 1992, 21, 272-304, DOI: 10.1002/em.2850210311.
  • 35. C. De Meester, M. Mercier and F. poncelet, Non-mutagenicity of 2-methyl- 2,3-epoxybutane and factors influencing the mutagenicity of 2,3-epoxybutane, J. Appl. Toxicol., 1982, 2, 284-288, DOI: 10.1002/em.2850210311.
  • 36. R. E. Parker and N. S. Issacs, Mechanisms of epoxide reactions, Chem. Rev., 1959, 59, 737-799, DOI: 10.1002/em.2850210311.
  • 37. T. Hanser, C. Barber, E. Rosser, J. D. Vessey, S. J. Webb and S. Werner, Self organising hypothesis: a new approach for representing and structuring SAR knowledge,J. Cheminf., 2014, 6, 1-21, DOI: 10.1186/1758-2946-6-21.
  • 38. M. E. Colvin, F. T. Hatch and J. S. Felton, Chemical and biological factors affecting mutagen potency, Mutat. Res., 1998, 400, 479-492, DOI: 10.1016/S0027-5107(98)00073-6.
  • 39. P. N. Judson, S. Stalford and J. Vessey, Assessing confidence in predictions made by knowledge-based systems, Toxicol. Res., 2013, 2, 70-79, DOI: 10.1039/C2TX20037F.
  • 40. K. L. Dobo, N. Greene, M. O. Cyr, S. Caron and W. K. Ku, The application of structure-based assessment to support safety and chemistry diligence to manage genotoxic impurities in active pharmaceutical ingredients during drug development, Regul. Toxicol. Pharmacol., 2006, 44, 282-293, DOI: 10.1016/j.yrtph.2006.01.004.
  • 41. N. Greene, K. L. Dobo, M. O. Kenyon, J. Cheung, J. Munzner, Z. Sobol, G. Sluggett, T. Zelesky, A. Sutter and J. Wichard, A practical application of two in silico systems for identification of potentially mutagenic impurities, Regul. Toxicol. Pharmacol., 2015, 72, 335-349, DOI: 10.1016/j. yrtph.2015.05.008.
  • 42. A. Sutter, A. Amberg, S. Boyer, A. Brigo, J. F. Contrera, L. L. Custer, K. L. Dobo, V. Gervais, S. Glowienke, J. van Gompel, N. Greene, W. Muster, J. Nicolette, M. V. Reddy, V. Thybaud, E. Vock, A. T. White and L. Muller, Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities, Regul. Toxicol. Pharmacol., 2013, 67, 39-52, DOI: 10.1016/j.yrtph.2013.05.001.
  • 43. D. p. Elder, a. White, J. Harvey, A. Teasdale, R. Williams and E. Covey- Crump, Mutagenic impurities: precompetitive/competitive collaborative and data sharing initiatives, Org. Process Res. Dev., 2015, 19, 1486-1494, DOI: 10.1021/acs.oprd.5b00128.
  • 44. D. S. Macmillan, S. J. Canipa, M. L. Chilton, R. V. Williams and C. G. Barber, predicting skin sensitisation using a decision tree integrated testing strategy with an in silico model and in chemico/in vitro assays, Regul. Toxicol. Pharmacol., 2016, 76, 30-38, DOI: 10.1016/j. yrtph.2016.01.009.
  • 45. R. V. Williams, A. Amberg, A. Brigo, L. Coquin, A. Giddings, S. Glowienke, N. Greene, R. Jolly, R. Kemper, C. O'Leary-Steele, A. Parenty, H. P. Spirkl, S. Stalford, S. K. Weiner and J. Wichard, It's difficult, but important, to make negative predictions, Regul. Toxicol. Pharmacol., 2016, 76, 79-86, DOI: 10.1016/j.yrtph.2016.01.008.
  • 46. G. M. Cramer, R. A. Ford and R. L. Hall, Estimation of toxic hazard-a decision tree approach, Food Cosmet. Toxicol., 1976, 16, 255-276, Doi: 10.1016/S0015-6264(76)80522-6.
  • 47. S. Lapenna, a. worth and institute for health and C. protection, Analysis of the Cramer Classification Scheme for Oral Systemic Toxicity Implications for its Implementation in Toxtree, Publications Office, Luxembourg, 2011, DOI: 10.2788/39716.
  • 48. S. Bhatia, T. Schultz, D. Roberts, J. Shen, L. Kromidas and A. Marie Api, Comparison of Cramer classification between Toxtree, the OECD QSAR Toolbox and expert judgement, Regul. Toxicol. Pharmacol., 2015, 71, 52-62, DOI: 10.1016/j.yrtph.2014.11.005.
  • 49. H. Kalkhof, M. Herzler, R. Stahlmann and U. Gundert-Remy, Threshold of toxicological concern values for non-genotoxic effects in industrial chemicals: re-evaluation of the Cramer classification, Arch. Toxicol., 2012, 86, 17-25, DOI: 10.1007/s00204-011-0732-z.
  • 50. H. J. M. Verhaar, C. J. van Leeuwen and J. L. M. Hermens, Classifying environmental pollutants, Chemosphere, 1992, 25, 471-491, DOI: 10.1016/0045-6535(92)90280-5.
  • 51. L. C. Yee and Y. C. wei, Statistical Modelling of Molecular Descriptors in QSAR/QSPR, 2012, Current modeling methods used in QSAR/QSPR, vol. 10, p. 1. , DOI: 10.1002/9783527645121.ch1.
  • 52. Click2Drug, www.click2drug.org, Jan. 2016.
  • 53. G. Gasser and N. Metzler-Nolte, Curr. Opin. Chem. Biol., 2012, 16, 84-91.
  • 54. ADMET Predictor, Version 7.2, Simulations Plus Inc., 2016.
  • 55. Medchem Designer, Version 3.0, Simulations Plus Inc., 2014.
  • 56. Derek, Version 5.0.1, Lhasa Limited, 2016.
  • 57. Meteor, Version 3.0.0, Lhasa Limited, 2016.
  • 58. QikProp, Version 4.6, Schrodinger, LLC, New York, NY, 2015.
  • 59. OECD QSAR Toolbox, Version 3.3.5, Organization for Economic Co-operation and Development, 2015.
  • 60. Toxtree, Version 2.6.13, Ideaconsult Ltd, 2015.
  • 61. G. Patlewicz, N. Jeliazkova, R. J. Safford, A. P. Worth and B. Aleksiev, An evaluation of the implementation of the Cramer classification scheme in the Toxtree software, Environ. Res., 2008, 19, 495-524, DOI: 10.1080/10629360802083871.
  • 62. Chemaxon Suite, https://www.chemaxon.com/products/marvin/marvin- sketch/, Jan. 2016.
  • 63. Chemicalize, http://www.chemicalize.org/, Jan. 2016.
  • 64. AIM: Analog Identification Methodology, Version 1.01, U.S. EPA, Risk Assessment Division, 2016.
  • 65. Chemspider, Royal Society of Chemistry, www.chemspider.com, Jan. 2016.
  • 66. Mobyle@RPBS, http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal. py#welcome, Jan. 2016.
  • 67. B. Neron, H. Menager, C. Maufrais, N. Joly, J. Maupetit, S. Letort, S. Carrere, P. Tuffery and C. Letondal, Mobyle: a new full web bioinformatics framework, Bioinformatics, 2009, 25, 3005-3011, DOI: 10.1093/bioinformatics/btp493.
  • 68. C. Alland, F. Moreews, D. Boens, M. Carpentier, S. Chiusa, M. Lonquety, N. Renault, Y. Wong, H. Cantalloube, J. Chomilier, J. Hochez, J. Pothier, B. O. Villoutreix, J. F. Zagury and P. Tuffery, RPBS: a web resource for structural bioinformatics, Nucleic Acids Res., 2005, 33, W44-W49, DOI: 10.1093/nar/gki477.
  • 69. A. Moores, M. Poyatos, Y. Luo and R. H. Crabtree, New J. Chem., 2006, 30, 1675, DOI: 10.1039/b608914c.
  • 70. E. Clot, O. Eisenstein and R. H. Crabtree, Computational structure-activity relationships in H2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials, Chem. Commun., 2007, 2231, DOI: 10.1039/B705037B.
  • 71. C. M. Araujo, D. L. Simone, S. J. Konezny, A. Shim, R. H. Crabtree, G. L. Soloveichik and v. S. Batista, Fuel selection for a regenerative organic fuel cell/flow battery: thermodynamic considerations, Energy Environ. Sci., 2012, 5, 9534, DOI: 10.1039/C2EE22749E.
  • 72. P. F. Driscoll, E. Deunf, L. Rubin, J. Arnold and J. B. Kerr, Electrochemical redox catalysis for electrochemical dehydrogenation of liquid hydrogen carrier fuels for energy storage and conversion, J. Electrochem. Soc., 2013, 160, G3152-G3158, DOI: 10.1149/2.024307jes.
  • 73. S. Hutson, P. Alexander, V. Allwardt, D. Aronoff, K. Bruner-Tran, D. Cliffel,

J. Davidson, A. Gough, D. Markov, L. McCawley, J. McKenzie, J. McLean,

K. Osteen, V. Pensabene, P. Samson, N. Senutovitch, S. Sherrod, M. Shot- well, D. Taylor, L. Tetz, R. Tuan, L. Veretti and J. Wikswo, Organs-on- Chips as Bridges for Predictive Toxicology, Appl In Vitro Toxicol., 2016, 2(2), 97-102, DOI: 10.1089/aivt.2016.0003.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel