Table of Contents:

The rapid development in electronics, instrumentation, and computational power has greatly enhanced the power of analytical instruments and has given an impulse for the development of newer analytical techniques. These in turn lead to the development of solution techniques that allow a more advanced and more accurate characterization of impurity ions and, in connection with the analysis of host matrix, also allow the evaluation of environmental effects. The understanding of the local environment and electronic structure of the investigated elements at the atomic scale allows a better understanding of the mechanism for changes of material properties. Theoretically, the changes in the electronic structure caused by the presence of trace elements (dopants), point defects, quantum effects, etc. are difficult to discuss even qualitatively and hardly possible to discuss quantitatively within the framework of conventional solid state physics, as opposite to the case of defect-free crystals. Luckily, there are several experimental methods for analyzing the local environment of atoms and/or ions along with their electronic structure reorganization. Among these methods, X-ray spectroscopy (including XAS. XES, R1XS), and XPS including RPES, especially ones that use synchrotron radiation, occupy a special place being surface-sensitive techniques. This is because many of the processes occur on the surface and the presence of impurities or contaminations at the surface/bulk can affect the performance of the device. This has led to the need for surface/bulk characterization. Nuclear techniques like Rutherford backscattering spectroscopy, nuclear reaction analysis, and thin layer activation analysis can also provide valuable information in this endeavor. This chapter gave an overview of the basic principle and application of these techniques in materials characterization.

The use of newer materials as chemical sensors, detectors, catalysts and as critical components in electronics, computers, and energy conversion devices call for advanced analytical techniques for their chemical and structural characterization. The use of newer analytical techniques can provide a solution to these challenges.


The work was partially supported by the University of Warsaw, Department of Chemistry (Poland). The author acknowledges support from Elettra Sincrotrone (Italy) and Helm- holtz-Zentrum Dresden-Rossendorf (Germany). The author is grateful to Dr. Renata Ratajczak of the National Centre for Nuclear Research (Poland) and to Dr. Yevgen Meli- khov of Cardiff University (UK) for their invaluable help and insightful discussions during RBS/XPS experiments and data interpretation.


Altwein, M., Finkenrath. H.. Konak, C., Stuke, J., & Zimmerer, G. (1968). The electronic structure of CdO II. Spectral distribution of optical constants. Physica Status Solicit B, 29, 203-209.

Attwood, D. (1999). Soft X-rays and extreme ultraviolet radiation: Principles and applications. Cambridge: Cambridge University Press.

Biesinger, M. C, Payne, В. P. Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257, 2717-2730.

Bouvier, Y., Mutel, B.. & Grimblot, J. (2004). Use of an Auger parameter for characterizing the Mg chemical state in different materials. Surface and Coatings Technology, 180-181, 169-173.

Briggs, D. (2003). XPS: Basic principles, spectral features and qualitative analysis. In D. Briggs & J. T. Grant (Eds.), Surface analysis by Auger and X-ray pliotoelectron spectroscopy (p. 840). Chichester: IM Publications.

Briggs, D., & Seah. M. P. (Eds.). (1990). Practical surface analysis in: Auger and X-ray photoelectron spectroscopy (p. 657). Chichester: Wiley.

Bunker, G. (2010). Introduction to XAFS: A practical guide to X-ray absorption fine structure spectroscopy. Cambridge: Cambridge University Press.

Cagnon, L.. Devolder. T., Cortes, R.. Morrone, A., Schmidt, J. E., Chappert, C., & Allongue, P. (2001). Enhanced interface perpendicular magnetic anisotropy in electrodeposited Co/Au(lll) layers. Physical Review B, 63, 104419.

Carcia, P. F. (1988). Perpendicular magnetic anisotropy in Pd/Co and Pt/Со thin-film layered structures. Journal of Applied Physics, 63, 5066-5073.

Chen, D., Ma, X. L., & Wang, Y. M. (2007). First-principles study of the interfacial structures of Au/MgO(001). Physical Review B, 75, 125409.

Chen, X., Feng, C., Wu, Z. L., Yang, F., Liu, Y., Jiang, S., ... Yu. G.H. (2014). Interfacial oxygen migration and its effect on the magnetic anisotropy in Pt/Co/MgO/Pt films. Applied Physics Letters, 104. 052413.

Chu, W. K. (1978). Energy loss of charged particles. In J. Thomas & A. Cachard (Eds.), Material characterization using ion beams (Vol. 28, pp. 3-34). NATO Advanced Study Institutes Series (Series B: Physics). Boston, MA: Springer US.

Chuang, Y.-T, Liou, J.-W.. & Woon, W.-Y. (2017). Formation of p-type ZnO thin film through coimplantation. Nanotechnology, 28, 035603.

Cox. P. A. (1975). Fractional parentage methods for ionisation of open shells of d and/electrons. In J. D. Dunitz, P. Hemmerich, R. H. Holm. J. A. Ibers, С. K. Jorgensen, J. B. Neilands, D. Reinen, R. J. P. Williams (Eds.), Photoelectron spectrometry. Structure and bonding (Vol. 24. pp. 59-81). Berlin and Heidelberg: Springer.

Daalderop, G. H. O., Kelly, P. J.. & den Broeder, F. J. A. (1992). Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. Physical Review Letters, 68, 682-685.

Daalderop, G. H. O., Kelly, P. J.. & Schuurmans, M. F. H. (1990). First-principles calculation of the magnetic anisotropy energy of (Co)n/(Y)m multilayers. Physical Review B. 42, 7270-7273.

Daalderop, G. H. O., Kelly, P. J., & Shuurmans, M. F. H. (1994). Magnetic anisotropy of a free-standing Co monolayer and of multilayers which contain Co monolayers. Physical Review B. 50, 9989-10003.

Dakhel, A. A.. & Henari, F. Z. (2003). Optical characterization of thermally evaporated thin CdO films. Crystal Research and Technology, 38, 979-985.

de Groot, F., & Kotani, E. (2008). Core level spectroscopy of solids. Boca Raton, FL: CRC Press.

Demchenko. I. N.. Chernyshova, M., Tyliszczak, T„ Denlinger, J. D., Yu. К. M., Speaks, D. T., ... Law- niczak-Jablonska, K. (2011). Electronic structure of CdO studied by soft X-ray spectroscopy. Journal of Electron Spectroscopy Related Phenomena, 184, 249-253.

Demchenko, I. N.. Denlinger, J. D.. Chernyshova, M., Yu. К. M., Speaks. D. T, Olalde-Velasco, R, ... Lavv- niczak-Jablonska. K. (2010). Full multiple scattering analysis of XANES at the Cd L3 and О К edges in CdO films combined with a soft-x-ray emission investigation. Physical Review B, 82, 075107.

Demchenko, I. N.. Lisowski. W., Syryanyy, Y., Melikhov, Y., Zaytseva, I„ Konstantynov, R, ... Cieplak, M. Z. (2017). Use of XPS to clarify the Hall coefficient sign variation in thin niobium layers buried in silicon. Applied Surface Science, 399, 32-40.

Demchenko, I. N.. Melikhov, Y., Konstantynov, R, Ratajczak, R., Turos, A., & Guziewicz, E. (2018b). Resonant photoemission spectroscopy study on the contribution of the Yb 4f states to the electronic structure of ZnO. Acta Physica Polonica A. 133, 907-909.

Demchenko, I. N.. Ratajczak, R.. Melikhov, Y., Konstantynov, R, & Guziewicz, E. (2019). Valence band of ZnO:Yb probed by resonant photoemission spectroscopy. Materials Science in Semiconductor Processing, 91, 306-309.

Demchenko, I. N.. Syryanyya, Y., Melikhov, Y., Nittler, L., Gladczuk, L., Lasek, K., ... Chernyshova, M. (2018a). X-ray photoelectron spectroscopy analysis as a tool to assess factors influencing magnetic anisotropy type in Co/MgO system with gold interlayer. Scripta Materialia, 145, 50-53.

Eich. D., Fuchs, O., Groh, U., Weinhardt, L., Fink, R., Umbach, E.,... Waag, A. (2006). Resonant inelastic soft x-ray scattering of Be chalcogenides. Physical Review B. 73: 115212.

Eisebitt, S., Liming, J., Rubensson, J.-E., Settels, A., Dederichs, P. H., Eberhardt, W., ... Tiedje, T. (1998). Resonant inelastic soft X-ray scattering at the Si L3 edge: Experiment and theory. Journal of Electron Spectroscopy Related Phenomena, 93, 245-250.

Engel, B. N., England, C. D., Leeuwen, R. A. V, Wiedmann. M. H., & Falco, С. M. (1991). Interface magnetic anisotropy in epitaxial superlattices. Physical Review Letters, 67, 1910-1913.

Gay, J. G., & Richter, R. (1986). Spin anisotropy of ferromagnetic films. Physical Review Letters, 56, 2728.

Gilbert, D. A.. Olamit, J., Dumas, R. K., Kirby, B. J., Grutter, A.J., Maranville, B.B., ... Liu, K. (2016). Controllable positive exchange bias via redox-driven oxygen migration. Nature Communications, 7, 11050.

Gladczuk, L., Aleshkevych, P., Lasek, K.. & Przyslupski, P. (2014). Magnetic anisotropy of Au/Co/Au/ MgO heterostructure: Role of the gold at the Co/MgO interface. Journal of Applied Physics, 116, 233909.

Gupta. R. R. & Sen, S. K. (1975). Calculation of multiplet structure of core p -vacancy levels. II. Physical Review B, 12, 15-19.

Hofmann, S. (1998). Sputter depth profile analysis of interfaces. Reports on Progress in Physics, 61, 827-886.

Hofmann, S. (2013). Anger- anti X-ray photoelectron spectroscopy in materials science (Vol. 49). Springer Series in Surface Sciences. Berlin and Heidelberg: Springer-Verlag.

Hurle, D. T. J. (Ed.). (1994). Handbook of crystal growth: Thin films and epitaxy: 3 (Vol. 3). Amsterdam, New York & North-Holland: Elsevier.

Jagadish, C., & Pearton, S. J. (Eds.). (2006). Zinc Oxide bulk, thin films and nanostructures. New York: Elsevier Science.

Khoo, К. H„ Wu, G„ Jhon, M. H„ Tran. M., Ernult, F„ Eason. K, ... Gan, С. K. (2013). First- principles study of perpendicular magnetic anisotropy in CoFe/MgO and CoFe/Mg2B206 interfaces. Physical Review B. 87, 174403.

Коска, J., & Konak, C. (1971). The structure of the indirect absorption edge of CdO. Physica Status Solidi B. 43, 731-738.

Koffyberg, F. P. (1976). Thermoreflectance spectra of CdO: Band gaps and band-population effects. Physical Review B, 13, 4470 4476.

Kohler, H. (1972). Optical properties and energy-band structure of CdO. Solid State Communications, 11, 1687-1690.

Lacour. D., Hehn, M., Alnot, M., Montaigne, F., Greullet, F., Lengaigne, G., ... Schuhl, A. (2007). Magnetic properties of postoxidized Pl/Co/Al layers with perpendicular anisotropy. Applied Physics Letters, 90, 192506.

Lam, N. Q. (1988). Ion bombardment effects on the near-surface composition during sputter profiling.

Surface and Interface Analysis, 12, 65-77.

Liming, J., Rubensson, J.-E., Ellmers, C., Eisebitt, S., & Eberhardt, W. (1997). Site- and symmetry-projected band structure measured by resonant inelastic soft x-ray scattering. Physical Review B. 56, 13147-13150.

Madelung, O. (Ed.). (1982). Semiconductors: Physics of II-VI and I-VII compounds. Berlin and Heidelberg: Springer-Verlag.

Manchon, A.. Ducruet, C., Lombard, L., Auffret, S., Rodmacq, B., Dieny, В.....Panaccione, G. (2008).

Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers. Journal of Applied Physics, 104, 043914.

Maschke, K., & Rossler, U. (1968). The electronic structure of CdO I. The energy-band structure (APW method). Physica Status Solidi B, 28, 577-581.

McGuinness, C., Stagarescu, С. B., & Ryan, P. J. (2003). Influence of shallow core-level hybridization on the electronic structure of post-transition-metal oxides studied using soft X-ray emission and absorption. Physical Review B, 68, 165104.

Nakajima, N.. Koide, T, Shidara. T. Miyauchi, H., Fukutani. H.. Fujimori, A.....Suzuki, Y. (1998).

Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Со/Pt multilayers: Magnetic circular x-ray dichroism study. Physical Review Letters, 81, 5229-5232.

Oswald, S., & Reiche. R. (2001). Binding state information from XPS depth profiling: Capabilities and limits. Applied Surface Science, 179, 307-315.

Piper, L. F. J., DeMasi, A., Smith, К. E., Schleife, A., Fuchs, F., Bechstedt, F., ... Munoz-Sanjose, V. (2008). Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies and ab initio calculations. Physical Review B, 77, 125204.

Ratajczak, R., Guziewicz, E., Prucnal, S., Luka, G.. Bottger. R., Heller, R.....Turos, A. (2018). Luminescence in the visible region from annealed thin ALD-ZnO films implanted with different rare earth ions. Physica Status Solidi A, 215, 1700889.

Ratajczak, R., Mieszczynski, C, Prucnal, S., Guziewicz, E., Stachowicz, M., Snigurenko, D.....

Turos, A. (2017a). Structural and optical studies of Pr implanted ZnO films subjected to a long-time or ultra-fast thermal annealing. Thin Solid Films, 643, 24-30.

Ratajczak, R., Prucnal, S., Guziewicz, E., Mieszczynski, C., Snigurenko, D.. Stachowicz, M.....

Turos, A. (2017b). The photoluminescence response to structural changes of Yb implanted ZnO crystals subjected to non-equilibrium processing. Journal of Applied Physics, 121, 075101.

Rovezzi, M., & Glatzel, P. (2014). Hard x-ray emission spectroscopy: A powerful tool for the characterization of magnetic semiconductors. Semiconductor Science and Technology, 29, 023002.

Schellekens, A. J., Deen, L., Wang, D., Kohlhepp. J. T, Swagten, H. J. M.. & Koopmans, B. (2013). Determining the Gilbert damping in perpendicularly magnetized Pt/Co/AlOx films. Applied Physics Letters, 102, 082405.

Stavitski, E.. & de Groot, F. M. F. (2010). The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron, 41, 687-694.

Turos, A., Jozvvik, P., Wojcik, M., Gaea, J., Ratajczak, R., & Stonert, A. (2017). Mechanism of damage buildup in ion bombarded ZnO. Ada Materialia, 134, 249-256.

van Bokhoven, J. A., & Lamberti, C. (Eds). (2016). X-ray absorption and x-ray emission spectroscopy: Theory and applications. Chichester, West Sussex: John Wiley & Sons, Inc.

Vincent Crist, B. (1999). Handbooks of monochromatic XPS spectra. USA: XPS International, Inc.

Wang. D. S., Wu, R., & Freemanet, A. J. (1993a). State-tracking first-principles determination of magnetocrystalline anisotropy. Physical Review Letters, 70, 869-872.

Wang. D. S., Wu. R., & Freemanet, A. J. (1993b). Magnetocrystalline anisotropy of Co-Pd interfaces. Physical Review B, 48, 15886-15892.

Wang, D. S., Wu. R., & Freemanet, A. J. (1994). Magnetocrystalline anisotropy of interfaces: First-principles theory for Co-Cu interface and interpretation by an effective ligand interaction model. Journal of Magnetism and Magnetic Materials, 129, 237-258.

Williams, J. S., & Poate, J. M. (Eds.). (1984). Ion implantation and beam processing. Sydney: Academic Press.

Wu. R., Li, C, & Freeman, A. J. (1991). Structural, electronic and magnetic properties of Co/Pd( 111) and Co/Pt(l 11). Journal of Magnetism and Magnetic Materials, 99, 71-80.

Yang, H. X., Chshiev, M.. Dieny, B., Lee, J. H., Manchon, A., & Shin, K. (2011). First-principles investigation of the very large perpendicular magnetic anisotropy at FelMgO and ColMgO interfaces. Physical Review B, 84, 054401.

Zhang, j. Y„ Yang, G„ Wang, S. G„ Liu, Y. W„ Zhao, Z. D„ Wu, Z. L„ ... Yu, G. H. (2014). Effect of MgO/Co interface and Co/MgO interface on the spin dependent transport in perpendicular Co/Pt multilayers. Journal of Applied Physics, 116, 163905.

Zhang, X. G., Butler, W. H., & Bandyopadhyay, A. (2003). Effects of the iron-oxide layer in Fe-FeO- MgO-Fe tunneling junctions. Physical Review B, 68, 092402.

Zhou, X., Yan, Y.. Jiang, M.. Cui. B.. Pan. F., & Song, C. (2016). Role of oxygen ion migration in the electrical control of magnetism in Pt/Co/Ni/Hf02 films. The Journal of Physical Chemistry C, 120, 1633-1639.

Ziegler, J. F., Biersack, J. R, & Ziegler, M. D. (2009). SRIM- the stopping and range of ions in solids. Chester, MD: SRIM Co. Retrieved from

< Prev   CONTENTS   Source   Next >