Metapopulation Capacity Meets Evolutionary Distinctness: Spatial Fragmentation Complements Phylogenetic Rarity in Prioritization

Jessica K. Schnell and Kamran Safi

Abstract Many species have declined or already gone extinct due to the human activities across the world causing what is termed the current sixth mass extinction event. The biggest determinant of species survival is the availability of a network of suitable habitat, affecting population size and eventual extinction risk. Considering that modern technology allows us to efficiently quantify habitat loss, species distribution data can inform us of the required minimum connectivity of habitats. Evolutionary distinctiveness (ED) is already part of conservation schemes to prioritize rare traits and unique phylogenetic history. However, so far none of these prioritisations quantifies the spatial constraints of a species to estimate long-term persistence based on the fragmentation of the landscape. Metapopulation capacity

(λM) is one such measurement for quantifying fragmentation. Here we propose a combination of metapopulation capacity and phylogenetic distinctiveness to priori-

tize important specific habitat patches for evolutionary distinct species. We applied the new framework to prioritize island mammals and found Data Deficient and Least Concern species with a high combined value in ED and λM. Balancing between the extinction risks of solitary islands and the potential loss of unique evolutionary history of rare species on these islands can be a worthwhile exercise in prioritization schemes.

Keywords Habitat fragmentation • Metapopulation capacity • EDGE of existence

• Conservation • Islands

Introduction

Conservation is an increasing necessity for the world (Pimm et al. 1995), and one that requires immediate action. Extinction occurs at a progressive rate, and we want to mitigate it before more species, known and unknown, are lost forever (Loehle and Eschenbach 2012). What is now recognised as the sixth mass extinction event is clearly attributable to anthropogenic action, mainly in the last few decades (Barnosky et al. 2011; Pereira et al. 2012). We will face great future challenges in preserving life on Earth, or at the least, in slowing down the rate of species loss. By setting priorities, as to which species or areas should receive the immediate attention, we can focus conservation efforts and resources in a bid to minimize the global biodiversity decline.

 
< Prev   CONTENTS   Next >